首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Formation of Organosilicon Compounds. 97. About the Influence of the Si-Substituents (Me, Cl) upon the Formation and the Reactions of Ylides 1,3-disilapropanes with different grade of chlorination or methylation at the silicon atoms and containing a CCl2 group cleave the Si? P bond of Me3SiPMe2. By subsequent rearrangement ylides with ? PMe2Cl group are formed. The reactivity of the CCl2 group depends on the grade of Si-chlorination resp. Si-methylation. Si-methylation decreases the reactivity of the CCl2 group. The reaction of 1,3-disilapropanes and Me3SiPMe2 (molar ratio 1:1) runs in a sequence shown in “Inhaltsübersicht”. Ylid C is able either to react with the initial compound A forming B, or in competition decomposes forming D. Reacting Si-perchlorinated carbosilanes, the decomposition forming D is not to be observed. In Si-methylated ylides like (Me3Si)2C?PMe2? PMe2 and (Me3Si)2C?PMe2? P(Me)SiMe3 the ylid carbon atom is able to abstract a proton of the P? CH3 group resp. P? H groups of the trivalent phosphorus forming (Me3Si)2C(H)PMe2. The rearrangement is proved by deuterated derivatives. The different behaviour is due to the increased basicity of the ylid-C atom in Si-methylated phosphorus ylides. Quite the same behaviour show the phosphorus ylides of 1,3,5-trisilacyclohexane.  相似文献   

3.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XV. Influence of the Chelate Compounds dppe and dppp on Formation and Properties of the Pt Complexes of tBu2P–P The chelating ligands dppe and dppp replace the PPh3 groups in [η2-{tBu2P–P}Pt(PPh3)2] 1 yielding [η2-{tBu2P–P}Pt(dppe)] 2 and [η2-{tBu2P–P}Pt(dppp)] 8 . However, they don't replace the phosphinophosphinidene ligand tBu2P–P. dppm does not react at all with 1 . [η2-{H2C=CH2}Pt(dppe)] 3 yields in the presence of tBu2P–P=P(Me)tBu2 4 exclusively Pt(dppe)2 5 and elemental Pt; no 2 could be detected. Similarly, [η2-{H2C=CH2}Pt(dppp)] 7 reacts with 4 to give mainly Pt(dppp)2 9 and Pt; [η2-{tBu2PP}Pt(PPh3)2] 8 is present only as a minor product. [η2-{tBu2P–P}Pt(dppe)] 2 crystallizes in the monoclinic space group P21/c (no. 14) with a = 1834.40(10) pm, b = 1679.70(10) pm, c = 1125.79(6) pm, β = 103.963(5)°.  相似文献   

4.
The Influence of Temperature and Impurities Addition on the Properties and the Constitution of Sodium Water Glass Solutions Sodium water glass (NaWG-)solutions of constant composition (SiO2/Na2O = 3,3; CSiO2 = 6,2 M) and different concentration of impurities (Fe, Al, Ti, Cu, chloride, sulfate) were investigated in dependence on temperature by means of the dye absorption method, 1H- and 23Na-NMR spectroscopy. It is shown, that the differences in the dye absorption spectra of normalized technical NaWG-solutions, mainly depend on the Fe-concentration in the solutions and their thermal history. From the results follow a crosslinking of polymeric silicate species by Fe? O? Si bonds and/or hydrogen bridges and a fully or partially degradation of these bonds at higher temperatures (150°C).  相似文献   

5.
On the Influence of Seed Crystals on the Formation of Calcium Silicates with the Composition 3 CaO · 2 SiO2 The formation of the calcium silicates kilchoanite and rankinite of the composition 3 CaO · 2 SiO2 is facilitated and enabled, respectively, in the presence of appropriate seed crystals. Kilchoanite (Ca6[(SiO4)(Si3O10)]) is formed from mixtures of CaO and SiO2 in the autoclave at 200°C and from C? S? H (di, poly) under normal atmosphere at 700°C by seeding for example with kilchoanite, aluminium compounds, γ-Ca2SiO4. Rankinite (Ca3Si2O7) can be synthesized under the same conditions, when rankinite itself is applied as seed crystal.  相似文献   

6.
Formation and Reactions of the CH2Li‐Derivatives of tBu2P–P=P(CH3)tBu2 and (Me3Si)tBuP–P=P(CH3)tBu2 With nBuLi, (Me3Si)tBuP–P=P(CH3)tBu2 ( 1 ) and tBu2P–P=P(CH3)tBu2 ( 2 ) yield (Me3Si)tBuP–P=P(CH2Li)tBu2 ( 3 ) and tBu2P–P=P(CH2Li)tBu2 ( 4 ), wich react with Me3SiCl to give (Me3Si)tBuP–P=P(CH2–SiMe3)tBu2 ( 5 ) and tBu2P–P=P(CH2–SiMe3)tBu2 ( 6 ), respectively. With tBu2P–P(SiMe3)–PtBuCl ( 7 ), compound 3 forms 5 as well as the cyclic products [H2C–P(tBu)2=P–P(tBu)–PtBu] ( 8 ) and [H2C–P(tBu)2=P–P(PtBu2)–P(tBu)] ( 9 ). Also 3 forms 8 with tBuPCl2. The cleavage of the Me3Si–P‐bond in 1 by means of C2Cl6 or N‐bromo‐succinimide yields (Cl)tBuP–P=P(CH3)tBu2 ( 10 ) or (Br)tBuP–P=P(CH3)tBu2 ( 11 ), resp. With LiP(SiMe3)2, 10 forms (Me3Si)2P–P(tBu)–P=P(CH3)tBu2 ( 12 ), and Et2P–P(tBu)–P=P(CH3)tBu2 ( 13 ) with LiPEt2. All compounds are characterized by 31P NMR Data and mass spectra; the ylide 5 and the THF adduct of 4 additionally by X‐ray structure analyses.  相似文献   

7.
8.
Formation of Organosilicon Compounds. 96. Preparation and Structure of P-Ylides of the 1,3,5-Trisilahexanes (Influence of the Substituents) The influence of the substituents at the silicon atoms on formation and structure of ylides of 1,3,5-trisilacyclohexanesis investigated. The reactions of 1 , 2 , 3 with Me3Si? PMe2 lead via cleavage of the Si? P bond and subsequent rearrangement to the ylides 4 , 5 and 6 . The x-ray structure determination reveals, that the atoms of the ylid part of 4 are in a plane with the shortened bond distances d(C? P) = 168.6 pm and d(Si? C) = 180.1 pm, whereas the other endocyclic Si? C distances remain nearly unaffected by the ylid formation. Only the endocyclic bond angles C? Si? C of the Si atoms of the ylid are enlarged (116°). In the molecule 6 d(C? P) = 164.6 pm is much shorter, but d(P? Br) = 236.6 pm is enlarged. This enlargement is coupled with a deviation of 17 pm for the ylidic C atom from the ylid plane. Distances and angles are normal in the methylated trisilnhexane. The ring in 6 has boat conformation, in 4 a flat chair conformation.  相似文献   

9.
Formation of Organosilicon Compounds. 112. The Influence of Reaction Conditions on the Reaction of (Cl3Si)2CCl2 with Silicon. The Structures of 2,2,3,3,5,5,6,6-Octachloro-1,4-bis(trichlorosilyl)-2,3,5,6-tetrasilabicyclo[2.1.1]-hexane and 1,1,3,4,6,6-Hexakis(trichlorosilyl)hexatetraene While reactions of (Cl3Si)2CCl2 1 with Si(Cu) in a fluid bed at 320°C exclusively yield products by silylation of the CCl2 group in 1 does the reaction in a stirred bed preferrably give rize to chlorosilanes containing C? C double and triple bonds. Compounds 5, 6, 7, 8 and 9 in Tab. 1 belong to the first group, whereas 3 and 4 belong to the second one. The reaction of 1 with elemental copper under dehalogenation at carbon produces 3, 4 and 11 . In the reaction of 1 with CaSi2 no additional Si? C bonds are formed, exclusively chlorosilanes with multiple C? C bonds as 3, 4 and 10 were found besides of SiCl4. The bicyclo[2.1.1]hexane 6 (Tab. 1) crystallizes monoclinically in the space group C2/c (no. 15) with a = 1557.8, b = 857.4, c = 1727.3 pm, β = 104.34° und Z = 4 molecules per unit cell; the hexatetraene 10 (Tab. 1) crystallizes monoclinically in the space group C2/m (no. 12) with a = 1189.6, b = 1433.8, c = 983.5 pm, β = 98.75° pm, and Z = 2 molecules per unit cell. The skeleton of 6 is a system of high bond stress with 2-C2 symmetry. The strongly folded (138.8°) four-membered ring (sum of angles = 344.2°) and the presence of both a Si? Si bond length of 238.2 pm and a Si? Si non-bonding distance of 255.1 pm are remarkable aspects of this feature. The mean bond lengths in the bicyclic compound were found to be d(Si? C) = 190.9 pm and d(Si? C) = 185.1 pm for exo- and endocyclic bonds, respectively. The skeleton of 10 is of the symmetry 2/m-C2h. The six-membered chain is plane. The central C? C single bond length and the mean distance of the cumulated double bonds are 148.6 pm and 130.5 pm, respectively.  相似文献   

10.
Concerning the Influence of the Substituents R = Ph, NEt2, iPr, and tBu in Triphosphanes (R2P)2P? SiMe3 and Phosphides Li(THF)2[(R2P)2P] on the Formation and Properties of Phosphino-phosphinidene-phosphoranes The triphosphanes X2P? P(SiMe3)? PY2 5, 7, 9, 11, 13 and the derived phosphides Li(THF)2[X2P? P? PY2] 6, 8, 10, 12, 14 were synthesized: 5 and 6 with X2 = iPr2 and Y2 = tBu2, 7 and 8 with X2 = Y2 = PhtBu, 9 and 10 with X2 = tBu2 and Y2 = Ph2, 11 and 12 with X2 = Y2 = Ph2, and 13 and 14 with X2 = tBu2 and Y2 = (NEt2)2. The silylated triphosphanes at ?70°C in toluene with CBr4 may yield X2P? P?P(Br)Y2 and X2P? P(Br)? PY2, and the lithiated phosphides with MeCl may yield X2P? P?P(Me)Y2 and X2P? P(Me)? PY2 depending on X and Y. The bromiated product of 5 (X2 = iPr2, Y2 = tBu2) is the ylide iPr2P? P?P(Br)tBu2, and the methylated derivatives of 6 are both iPr2P? P?P(Me)tBu2, tBu2P? P?P(Me)iPr and the methylated triphosphane. Ph2P? P?P(Br)tBu2 as well as the brominated triphosphane are obtained from 9 (X2 = tBu2, Y2 = Ph2), and similarly Ph2P? P?P(Me)tBu2 and the methylated triphosphane from 10 . Compound 14 (X2 = tBu2, Y2 = (NEt2)2 gives rise to the brominated ylide tBu2)P? P?P(Br) · (NEt2)2 and to the brominated triphosphane, and on methylation to tBu2P? P?P(Me)(NEt2)2 and to tBu2P? P(Me)? P · (NEt2)2 (main product). The Br substituted derivatives decompose already on warming to ?30°C, while the methylated compounds are stable up to 20°C.  相似文献   

11.
About the Effect of Substitution on the Crystal Structure of SrNi2P2 With several series of mixed crystals the effect of substitution on the crystal structure of SrNi2P2 (polymorphic, the structures are variants of the ThCr2Si2 type) is investigated by X-ray methods. In the compound Ni completely can be substituted by Co and Cu respectively and also P by As; in Sr1–xCaxNi2P2 there is a gap of the miscibility between 0.3 ≤ x ≤ 0.6. A low substitution of the several elements more than proportionally changes the structure parameters. In this range the mixed crystals with Ca, Cu, and As, respectively, undergo first order phase transitions with significant changes of the bond distances, which will be interpreted by the results of band structure calculations.  相似文献   

12.
On the Mechanism of the Formations of Chromium(IV)oxide from Chromyl Chloride The decomposition of chromyl chloride in the temperature range from 380 to 400°C leads with increasing oxygen pressure to chromium oxides containing up to nearly 90% of CrO2. The interaction with the chlorine prevents a quantitative formation of CrO2. Up to 315°C during the decomposition of chromyl chloride chromium oxides of higher valencies are formed separating chlorine and taking up oxygen simultaneously. By working in flowing oxygen it could be proved that the decomposition goes at lower temperatures via the nondetectable CrO3. By heating gradually and by removing the chlorine as far as possible stoichiometric CrO2 at oxygen pressures above 60 atm could be obtained.  相似文献   

13.
The Influence of Aniline pK Values on the Formation and Reactivity of Substituted Butadienes from Methyl Coumalate The product of the reaction between 2 equiv. of methyl coumalate ( 1 ) and 1 equiv. of a substituted aromatic amine depends on the pK value of the latter. Aromatic amines with pK values between 1.05 and 2.8 produce bicyclic lactones 4 , whereas those with higher pK values also give 2-azabicyclo[3.3.1]nona-3,7-diene-9-carboxylic acids 9 . The latter, products of the intramolecular Diels-Alder reaction 8 → 9 , may in certain cases even prevail.  相似文献   

14.
Thermal Decomposition of Some Alkali Metal and Ammonium Halogenoaurates(III), and the Crystal Structure of the Decomposition Products, Rb2Au2Br6, Rb3Au3Cl8, and Au(NH3)Cl3 The thermal decomposition of the salts MAuX4 and M2Au2I6, with M = K, NH4, Rb; and X = Cl, Br; has been investigated. With the exception of NH4AuCl4 and KAuCl4, all decompose with loss of halogen to the mixed valence compound M3Au3X8, sometimes via the intermediate M2Au2X6. Tetraiodoaurates are not stable at room temperature. In the decomposition of NH4AuCl4, HCl, and Au(NH3)Cl3 are formed. KAuCl4 decomposes directly into Au und KCl. The crystal lattices of the salts Rb2Au2Br6 and Rb3Au3Cl8 are monoclinic and built up from Rb+. AuX2?, and AuX4? ions. There exists a close structural relationship between Rb2Au2Br6, Cs2Au2Cl6, and the perovskite structure. Rb2Au2I6 is isotypic with Rb2Au2Br6. The Rb3Au3Cl8 structure type is also observed for the M3Au3X8 salts with M = NH4, K, Rb; and X = Br, I. In the structure of Au(NH3)Cl3 there are discrete molecules in which Au(III) is surrounded by 3 Cl and 1 N atoms in square coplanar coordination. The infrared spectra of these compounds are discussed.  相似文献   

15.
The Chemical Transport of VO2 with Cl2 and HCl + Cl2 and the Influence of the O2-Coexistence Equilibrium Pressure on the Transport Behaviour The transport behaviour of VO2 with Cl2, HCl, and Cl2 was calculated and compared with the experimental results. VO2 with the upper phase boundary transports with HCl and HCl + Cl2 from the colder to the hotter zone, VO2 of the lower phase boundary does not transport with HCl. The composition of the deposited VO2 is near the upper boundary oxygen richer than in the start space. VO2 does not transport with Cl2.  相似文献   

16.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

17.
The Influence of Phosphoryl Substituents on the Properties of P‐Substituted 2‐Methylimidazolium Ions and 2‐Methyleneimidazolines [1] The imidazolines ImCHP(E)Ph2 [ 6 , E = S ( a ), Se ( b )] are obtained from ImCHPPh2 ( 4 ) and sulfur or selenium. HBF4 reaction yields the corresponding imidazolium salts [ImCH2P(E)Ph2][BF4] [ 5 , E = S ( a ), Se ( b )]. 1, 3, 4, 5‐Tetramethyl‐2‐methylenimidazoline ( 1 , ImCH2) reacts with Ph2P(O)Cl to give the corresponding phosphane salt [ImCH2P(O)Ph2]Cl ( 7 ) from which the vinyl compound ImCHP(O)Ph2 ( 8 ) is formed through deprotonation. 8 reacts with excess HBF4 to give the phosphine oxide BF3 adduct [ImCH2P(O)Ph2 · BF3][BF4] ( 9 ). The crystal structures of 5a , 5b , 6b , 7 · CH2Cl2 and 9 · H2O as well as preliminary data of 8 are reported and discussed on comparison with the phosphanes [ImCH2PPh2][BF4] ( 3b ) and ImCHPPh2 ( 4 ). From structural data, π‐electron delocalisation is concluded for 6b and 8 .  相似文献   

18.
Formation and Properties of Li2P7R (R = Si(CH3)3, CH3, C(CH3)3) The reaction of P7(Sime3)3 with Li3P7 in the molar ratio of 2:1 yields LiP7(Sime3)2, and in the molar ratio of 1:2 Li2P7Sime3 is formed. Li2P7me and Li2P7Cme3 (me = CH3) are obtained by reaction of white phosphorus with Lime, or LiCme3, respectively [2]. The compounds Li2P7R (R = Sime3, Cme3, me) show typical valence tautomerism, as established by 31P-n.m.r. spectroscopy at various temperatures. Also LiP(Sime3)2 transforms P7(Sime3)3 to yield Li2P7Sime3 but in this reaction considerable cleavage of P? P bonds occurs, too.  相似文献   

19.
20.
Application of the Free Volume Theory to Glasses and Melts in the System Germanium–Selenium The temperature dependence on the molar volume of glasses and melts was measured for the compositions: Ge5Se7, Ge2Se3, Ge3Se7, GeSe3, GeSe5. Values of the free volume were calculated. Correlating this values according to free volume theory with data from the literature concerning the viscosity of the melts allows the estimation of the minimum required volume of the voids. Se is found as the unit of viscous flow for GeSe2?Se-melts. The mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号