首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aqueous solution behavior and thermoreversible gelation properties of pyridine‐end‐functionalized poly(ethylene glycol)–poly(L ‐lactide) (PEG–(PLLA)8–py) star block copolymers in the presence of coordinating transition metal ions were studied. In aqueous solutions, the macromonomers self‐assembled into micelles and micellar aggregates at low concentrations and formed physically crosslinked, thermoreversible hydrogels above a critical gel concentration (CGC) of 8% w/v. In the presence of transition metal ions like Cu(II), Co(II), or Mn(II), the aggregate dimensions increased. Above the CGC, the gel–sol transition shifted to higher temperatures due to the formation of additional crosslinks from intermolecular coordination complexes between metal ions and pyridine ligands. Furthermore, as an example, PEG–(PLLA)8–py hydrogels stabilized by Mn(II)–pyridine coordination complexes were more resistant against degradation/dissolution when placed in phosphate buffered saline at 37 °C when compared with hydrogels prepared in water. Importantly, the stabilizing effect of metal–ligand coordination was noticeable at very low Cu(II) concentrations, which have been reported to be noncytotoxic for fibroblasts in vitro. These novel PEG–(PLLA)8–py metallo‐hydrogels, which are the first systems to combine metal–ligand coordination with the advantageous properties of PEG–PLLA copolymer hydrogels, are appealing materials that may find use in biomedical as well as environmental applications like the removal of heavy metal ions from waste streams. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
This article describes synthesis and route of thermal degradation and studies of kinetic parameters of some coordination polymers of first transition series metal ions viz. Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The newly synthesized ligand and its coordination polymers have been characterized by various instrumental techniques. The thermal degradation studies have been studied at different heating rates to determine the apparent activation energy, order of reaction, entropy change, free energy change, apparent entropy change, and frequency factor using Sharp–Wentworth and Freeman–Carroll methods. Thermo gravimetric analysis (TGA) has been used to determine the thermal stability of coordination polymers. The decomposition temperatures of the polymers were defined by half decomposition curve technique.  相似文献   

3.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Some new coordination polymers of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), obtained from the interaction of metal acetate with dipotassium salt of N,N’-di(carboxyethylidene)terephthalaldehydediimine (K2SB) are described. The products, which have been characterized by elemental analyses, magnetic measurements, thermogravimetric analyses, electronic and infrared spectral studies, have composition, [M(SB)(H2O)2]n. These colored coordination polymers are non-hygroscopic and quite stable at room temperature. On the basis of analytical data and IR studies, a 1:1 metal to ligand stoichiometry has been suggested to these coordination polymers. The IR studies have also revealed that ligands are coordinated to metal ion through carboxy oxygen and azomethine nitrogen. All the studies suggested tetradentate nature of the ligand with octahedral symmetry of the coordination polymers. All the coordination polymers are insoluble in acetone, ethanol, chloroform, methanol, benzene, DMF and DMSO. The thermal decomposition of the coordination polymers is studied and indicates that not only the coordinated water is lost but also that the decomposition of the ligand from the coordination polymers is necessary to interpret the successive mass loss.  相似文献   

5.
The complexation of uranyl ion (UO22+) in aqueous solution with polymers containing carboxylic acid groups was studied potentiometrically. Overall formation constants of the uranyl complexes with poly(methacrylic acid) and crosslinked poly(acrylic acid) were much larger than those with the corresponding low molecular carboxylic acids. Decrease in the viscosity of the polymer solution on adding uranyl ion indicated that poly(acrylic acid) forms intra-polymer chelates with uranyl ion. The crosslinked poly(acrylic acid) adsorbed uranyl ions at higher efficiency than transition metal ions.  相似文献   

6.
A new class of chelating polymers using Amberlite XAD-16 (AXAD-16) modified with (N-(3,4-dihydroxy)benzyl)-4-amino,3-hydroxynapthalene-1-sulphonic acid has been developed based on dual mechanism bifunctional polymers, for the extraction of transition and post-transition metal ions. The optimum pH conditions for the quantitative sorption of metal ions were studied. The developed method showed superior extraction qualities with high metal loading capacities of 71, 85, 182, 130 and 46 mg g−1 for Ni(II), Cd(II), Pb(II), Cu(II) and Co(II), respectively. The rate of metal ion uptake i.e. kinetics studies performed under optimum levels showed a time duration of <5 min except for Co(II) which required 20 min, for complete metal ion saturation. Desorption of metal ions were effective with 15 ml of 2 M HCl/HNO3 prior to detection using flame atomic absorption spectrophotometer. The chelating polymer was highly ion-selective in nature even in the presence of large concentrations of alkali and alkaline earth metal ions, with a high preconcentrating ability for the metal ions of interest. The developed chelating matrix was tested on its utility with synthetic and real samples like river/sea/tap/well water samples and also with multivitamin/mineral tablets, showed R.S.D. values of <2.5% reflecting on the accuracy and reproducibility of data using the newly developed resin matrix.  相似文献   

7.
Modified crosslinked polyacrylamides having different functional groups prepared by transamidation reaction in aqueous and non‐aqueous medium and by Hofmann reaction were used as chelating agents for removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions at different pH values. Under non‐competitive conditions, polymers adsorbed different amounts of metal ions, depending on their functional groups and swelling abilities. The metal ion adsorption capacities of polymers changed between 0.11–1.71 mmol/g polymer. Under competitive conditions, while the polymers having mainly secondary amine groups were highly selective for Cu(II) ions (99.4%), those having mainly secondary amide and carboxylate groups have shown high selectivity towards Pb(II) ions (99.5%). The selectivity towards Cu(II) ion decreased and Pb(II) ion selectivity increased by the decrease of the pH of the solutions. The high initial adsorption rate (<10 min) suggests that the adsorption occurs mainly on the polymer surface. A regeneration procedure by treatment with dilute HCl solution showed that the modified polymers could be used several times without loss of their adsorption capacities.  相似文献   

8.
Coordination polymers of 1,4-bis(2′-hydroxyphenylazomethine) phenylene have been prepared with the metal ions Ti(III), Cr(III), Fe(III), Mn(II), Ni(II), and Cu(II). They were characterized by elemental analysis, IR, and electronic spectra. The metal contents in all polymers were found to be consistent with a 1:1 (metal:ligand) stoichiometry. The thermal behavior of these coordination polymers has been studied by thermogravimetric analysis in air up to 750°C, and the data showed that they are thermally stable up to 200°C. Physical properties such as the solubility and viscosity of the polymer complexes were also determined. Electrical conductivity measurements of the synthesized polychelated polymers showed that they are insulators except for the Ni(II) complex which shows a semiconducting character. Mössbauer data clearly establish the 3 + oxidation state for the iron complex polymer.  相似文献   

9.

The novel transition metal saccharinato complexes of N-(2-hydroxyethyl)-ethylendiamine (HydEt-en) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Coordination behaviour of HydEt-en has been studied. The Mn(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes, while the Fe(II) and Co(II) complexes are dimeric. The crystal structures of the [Cu(sac)2(HydEt-en)2] and [Cd(sac)2(HydEt-en)2] complexes, where sac is the deprotonated form of saccharin, were determined by x-ray diffraction. The metal ions are octahedrally coordinated by these ligands. The amine ligand acts as a bidentate N-donor ligand and its ethanol group is not involved in coordination. The sac ions coordinate through the deprotonated N as a monodentate ligand. The NH and OH groups of the amine ligand are involved in intra- and intermolecular hydrogen bonding with the carbonyl and sulphonyl oxygens of the sac ions to form a three-dimensional infinite network.  相似文献   

10.
The complex structures and interactions of sulfur‐containing chelating resin poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfide (PVBS), poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfoxide (PVBSO), and poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfone (PVBSO2) with divalent metal chlorides (Cu(II), Ni(II), Zn(II), Cd(II), and Pd(II)) were investigated theoretically. Results indicate that PVBS tends to coordinate with metal ions by sulfur and oxygen atoms forming five‐membered ring chelating complexes; while PVBSO and PVBSO2 prefer to interact with metal ions by the oxygen atom of the sulfoxide or sulfone and hydroxyl group to form six‐membered ring chelating compounds. Theoretical calculations reveal that sulfur atoms of PVBS are the main contributor when coordinate with metal ions, while oxygen atoms also take part in the coordination with Cu(II), Zn(II), and Cd(II). As for PVBSO, the oxygen atoms of sulfoxide group play a key role in the coordination, but sulfur and hydroxyl oxygen also participate in the coordination. Similarly, sulfone group oxygen atoms of PVBSO2 dominate the coordination of Ni(II), Cu(II), and Pd(II), while the affinities of Zn(II) and Cd(II) are mainly attributed to the hydroxyl oxygen atoms. The computational results are in good agreement with the XPS analysis. Combined the theoretical and experimental results, further understanding of the structural information on the complexes was achieved and the adsorption mechanism was confirmed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
New Schiff bases derived from 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene(H2addn) and 1,2-propanediamine(pn), 2,3-butanediamine(pn) and 1,2-cyclohexyldiamine(chn) have been prepared and characterized as (H4addn-diam). In this work is reported an improved experimental method which yields well characterized mononuclear species of H4addn-en and H4addn-pn with Cu(II), Ni(II) and Co(II). The Cu(II) complex has been studied by esr which unambigously shows a N2O2 coordination mode for the metal ion. Based on the spectral characteristics of these complexes we conclude that all metal atoms have the same coordination mode. Only one binulear complex, [NiUO2(addn-en)] is reported in this work. All attempts to synthesize binuclear complexes with first transition series metal ions were unsuccessful.  相似文献   

12.
Metal ion specificity studies of divinylbenzene (DVB)-crosslinked polyacrylamide-supported glycines in different structural environments were investigated. The effect of the degree of crosslinking on the specific rebinding of the desorbed metal ion was investigated towards Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal ion-desorbed resins showed specificity for the desorbed metal ion and the specificity characteristics increases with an increasing degree of the crosslinking agent. The polymeric ligands and metal complexes were characterized by IR, UV-visible and EPR spectra, and by SEM analysis. The swelling and solvation characteristics of the crosslinked polymers, polymeric ligands and metal complexes, the effect of the pH dependence on metal ion binding and rebinding and the kinetics of metal ion binding and rebinding were also followed. The complexation resulted in the downfield shift of the carboxylate peak in the IR spectra. The EPR parameters are in agreement with a distorted tetragonal geometry. The Cu(II) ion-desorbed resins selectively rebinds Cu(II) ions from a mixture of Cu(II) and Co(II) and Cu(II) and Ni(II) ions. The resin could be regenerated several times without loss of capacity and effective for the specific and selective rebinding of Cu(II) ions.  相似文献   

13.
Cobalt(II), nickel(II), copper(II), and zinc(II) trifluoromethanesulfonates form complexes with the phosphoryl ligands hexamethylphosphoric triamide, nonamethyl imidodiphosphoric tetramide, trimorpholinophosphine oxide, tributylphosphine oxide, and triphenylphosphine oxide. The compounds have been prepared by a substitution reaction using trialkyl orthoformates as dehydrating agents and were investigated with the aid of infrared and ligand-field spectroscopy. In all compounds the ligands coordinate via the phosphoryl oxygen atoms. In some complexes the trifluoromethanesulfonate anions are (semi-)coordinated to the metal ions. The coordination around the metal ions was found to be tetrahedral, square pyramidal, or octahedral depending on the particular combination of metal ion and ligand. In its coordination behaviour the CF3SO3? ion resembles the perrhenate ion.  相似文献   

14.
Self-assembling coordination polymers based on Pd II and Cu II metal ions were prepared from complexation of a bent-shaped bispyridine ligand and a corresponding transition metal. These coordination polymers were observed to self-assemble into supramolecular structures that differ significantly depending on the coordination geometry of the metal center. The polymer based on Pd II self-assembles into a layer structure formed by bridging bispyridine ligands connected in a trans-position of the square-planar coordination geometry of metal center. In contrast, the polymer based on Cu II adopts a double-helical conformation with regular grooves, driven by interstranded, copper-chloride dimeric interaction. The double-stranded helical organization is further confirmed by structure optimization from density functional theory with aromatic framework, showing that the optimized double-helical structure is energetically favorable and consistent with the experimental results. These results demonstrate that weak metal-ligand bridging interactions can provide a useful strategy to construct stable double-stranded helical nanotubes.  相似文献   

15.
A new polyester, poly‐(ethylene oxamide‐N,N′‐diacetate) (PEODA), containing glycine moiety was synthesized by the reaction of oxamide‐N,N′‐diacetic acid and ethylene glycol and its polymer–metal complexes were synthesized with transition metal ions. The monomer oxamide‐N,N′‐diacetic acid was prepared by the reaction of glycine and diethyl oxalate. The polymer and its metal complexes were characterized by elemental analysis and other spectroscopic techniques. The in vitro antibacterial activities of all the synthesized polymers were investigated against some bacteria and fungi. The analytical data revealed that the coordination polymers of Mn(II), Co(II) and Ni(II) are coordinated with two water molecules, which are further supported by FTIR spectra and TGA data. The polymer–metal complexes showed excellent antibacterial activities against both types of microorganisms; the polymeric ligand was also found to be effective but less so than the polymer–metal complexes. On the basis of the antimicrobial behavior, these polymers may be used as antifungal and antifouling coating materials in fields like life‐saving medical devices and the bottoms of ships. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The coordination properties of 5-amino-1,3,4-thiadiazole-2-sulfonamide (Hats) with Cu(II), Ni(II) and Zn(II) ions, are analyzed. Although the ligand presents several donor atoms, we have only observed three coordination behaviors: (i) as a monodentate ligand through the Nsulfonamido atom, (ii) as a bridging ligand linking the metal ions through the Nsulfonamido and Nthiadizole atoms and (iii) as a bridging ligand linking metal ions through the N and O atoms of the sulfonamidate group. It is noteworthy that coordination mode (iii) is observed for the first time in heterocyclic sulfonamides complexes. In addition, the conformation of the Hats as counter-ion is analyzed and compared with the conformations that the ligand adopts in metal complexes.  相似文献   

17.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

18.
New metal-Schiff-base coordination polymer films were prepared using multiple sequential adsorption of metal ions and salen-based ligand molecules. As the ligands, bis-bidentate 5,5'-methylene-bis(N-methylsalicylidenamine) (MBSA), tetra-bidentate N,N',N' ',N' '-tetrasalicylidene-polyamidoamine (TSPA), and multi-bidentate poly(N-salicylidenevinylamine) (PSVA) were used. The metal ions were Cu(II), Zn(II), Fe(II), Fe(III), and Ce(IV). The resulting films are deeply colored due to the formation of coordinative bonds between the metal ions and the salen groups. Our study indicates that film formation becomes progressively easier, if the number of salen groups per ligand molecule increases. While Cu(II), Ni(II), Fe, and Ce(IV) are well suited for complex formation, Zn(II) is less suited. Possible structures of the polymers are discussed. Cyclic voltammetric studies of the films are also presented.  相似文献   

19.
Vilsmeier–Haack (VH) formylation reactions with acetophenones are sluggish in acetonitrile medium even at elevated temperatures. However, millimolar concentrations of transition metal ions such as Cu(II), Ni(II), Co(II), and Cd(II) were found to exhibit efficient catalytic activity in Vilsmeier–Haack Reactions with acetophenones. Reactions are accelerated remarkably in the presence of transition metal ions. The VH reactions followed second order kinetics and afforded acetyl derivatives under kinetic conditions also irrespective of the nature of oxychloride (POCl3 or SOCl2) used for the preparation of VH reagent along with DMF. On the basis of UV–vis spectroscopic studies and kinetic observations, participation of a ternary precursor [M(II) S (VHR)] in the rate‐limiting step has been proposed to explain the mechanism of the metal ion–catalyzed VH reaction.  相似文献   

20.
无机-有机复合聚合物特别是类分子筛聚合物、类多层钙钛矿和仿生物材料的合成及其应用研究成为近几年来一个热门的研究领域。我们瞄准了这一前沿领域并合成和表征了以下四个系列具有纳米孔洞的分子笼和一维、二维或三维的新型无机聚合物:(1)带有纳米尺寸空腔和孔状结构的新型过渡金属和稀土金属聚合物;(2)含有螺旋链的一维链状聚合物;(3)具有石墨形态层状结构和优异导电性能的聚合物;(4)以强金属-金属相互作用为核心、有机分子为稳定外壳的纳米线聚合物。本文总结这四个系列化合物的合成结构和特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号