首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

2.
A combined theoretical and experimental study of the adhesion of alumina particles and polystyrene latex spheres to silicon dioxide surfaces was performed. A boundary element technique was used to model electrostatic interactions between micron-scale particles and planar surfaces when the particles and surfaces were in contact. This method allows quantitative evaluation of the effects of particle geometry and surface roughness on the electrostatic interaction. The electrostatic interactions are combined with a previously developed model for van der Waals forces in particle adhesion. The combined model accounts for the effects of particle and substrate geometry, surface roughness and asperity deformation on the adhesion force. Predictions from the combined model are compared with experimental measurements made with an atomic force microscope. Measurements are made in aqueous solutions of varying ionic strength and solution pH. While van der Waals forces are generally dominant when particles are in contact with surfaces, results obtained here indicate that electrostatic interactions contribute to the overall adhesion force in certain cases. Specifically, alumina particles with complex geometries were found to adhere to surfaces due to both electrostatic and van der Waals interactions, while polystyrene latex spheres were not affected by electrostatic forces when in contact with various surfaces.  相似文献   

3.
Lin YC  Jen CP 《Lab on a chip》2002,2(3):164-169
In this study, the separation mechanism employed in hydrodynamic chromatography in microchannel devices is analyzed. The main purpose of this work is to provide a methodology to develop a predictive model for hydrodynamic chromatography for biological macromolecules in microchannels and to assess the importance of various phenomenological coefficients. A theoretical model for the hydrodynamic chromatography of particles in a microchannel is investigated herein. A fully developed concentration profile for non-reactive particles in a microchannel was obtained to elucidate the hydrodynamic chromatography of these particles. The external forces acting on the particles considered in this model include the van der Waals attractive force, double-layer force as well as the gravitational force. The surface forces, such as van der Waals attractive force as well as the double-layer repulsive force, can either enhance or hinder the average velocity of the macromolecular particles. The average velocity of the particles decreases with the molecular radius because the van der Waals attractive force increases the concentration of the particles near the channel surface, which is the low-velocity region. The transport velocity of the particles is dominated by the gravity and the higher density enlarges the effect caused by gravity.  相似文献   

4.
Superlubricity using repulsive van der Waals forces   总被引:1,自引:0,他引:1  
Using colloid probe atomic force microscopy, we show that if repulsive van der Waals forces exist between two surfaces prior to their contact then friction is essentially precluded and supersliding is achieved. The friction measurements presented here are of the same order as the lowest ever recorded friction coefficients in liquid, though they are achieved by a completely different approach. A gold sphere attached to an AFM cantilever is forced to interact with a smooth Teflon surface (templated on mica). In cyclohexane, a repulsive van der Waals force is observed that diverges at short separations. The friction coefficient associated with this system is on the order of 0.0003. When the refractive index of the liquid is changed, the force can be tuned from repulsive to attractive and adhesive. The friction coefficient increases as the Hamaker constant becomes more positive and the divergent repulsive force, which prevents solid-solid contact, gets switched off.  相似文献   

5.
Measurements of the contact radius as a function of applied force between a mica surface and a silica surface (mica/silica) in air are reported. The load/unload results show that the contact radius generally increases with applied force. Because of the presence of charging due to contact electrification, both a short-range van der Waals adhesion force and longer-range electrostatic adhesive interaction contribute to the measured force. The results indicate that approximately 20% of the pull-off force is due to van der Waals forces. The contact radius versus applied force results can be fit to Johnson-Kendall-Roberts (JKR) theory by considering that only the short-range van der Waals forces contribute to the work of adhesion and subtracting a constant longer-range electrostatic force. Also, an additional and unexpected step function is superimposed on the contact radius versus applied force curve. Thus, the contact diameter increases in a stepped dependence with increasing force. The stepped contact behavior is seen only for increasing force and is not observed when symmetric mica/mica or silica/silica contacts are measured. In humid conditions, the contact diameter of the mica/silica contact increases monotonically with applied force. Friction forces between the surfaces are also measured and the shear stress of a mica/silica interface is 100 times greater than the shear stress of a mica/mica interface. This large shear stress retards the increase in contact area as the force is increased and leads to the observed stepped contact mechanics behavior.  相似文献   

6.
This work was motivated by the unexpected values of adhesion forces measured between an atomic force microscopy tip and the hydrophobic surface of ultra-high-molecular-weight polyethylene. Two types of samples with different roughness but similar wettability were tested. Adhesion forces of similar magnitude were obtained in air and in polar liquids (water and Hank's Balanced Salt Solution, a saline solution) with the rougher sample. In contrast, the adhesion forces measured on the smoother sample in air were much higher than those measured in water or in the aqueous solution. Those experimental results suggested the presence of nanobubbles at the interface between the rough sample and the polar liquids. The existence of the nanobubbles was further confirmed by the images of the interface obtained in noncontact tapping mode. The adhesion forces measured in a nonpolar liquid (hexadecane) were small and of the same order of magnitude for both samples and their values were in good agreement with the predictions of the London-Hamaker approach for the van der Waals interactions. Finally, we correlate the appearance of nanobubbles with surface topography. The conclusion of this work is that adhesion forces measured in aqueous media may be strongly affected by the presence of nanobubbles if the surface presents topographical accidents.  相似文献   

7.
The hydrodynamic interaction between a rising bubble and a sedimenting particle during microbubble flotation is considered. The effects of attractive van der Waals forces and attractive or repulsive electrostatic forces are included. A mathematical model is presented which is used to perform a trajectory analysis and to calculate collision efficiencies between the bubble and particle. It is shown that collision efficiencies and the nature of the bubble-particle interactions are strongly dependent on the relative strengths of the van der Waals and electrostatic forces and on the lengthscales over which these forces act. It is demonstrated that optimal operating conditions can be suggested to achieve efficient microbubble flotation by correctly accounting for the interaction of van der Waals, electrostatic, and hydrodynamic forces. Copyright 1999 Academic Press.  相似文献   

8.
The origin of adhesion in humid air is investigated by pull-off force measurements between nanoscale contacts using atomic force microscopes in controlled environments from ultrahigh vacuum through various humidity conditions to water. An equivalent work of adhesion (WOA) model with a simplified interface stress distribution is developed, combining the effects of screened van der Waals and meniscus forces, which describes adhesion in humid air and which self-consistently treats the contact stress and deformation. Although the pull-off force is found to vary significantly with humidity, the equivalent WOA is found to be invariant. Increasing humidity alters the nature of the surface adhesion from a compliant contact with a localized, intense meniscus force to a stiff contact with an extended, weak meniscus force.  相似文献   

9.
Controlling the interface between bacteria and solid materials has become an important task in biomedical science. For a fundamental and comprehensive understanding of adhesion it is necessary to seek quantitative information about the involved interactions. Most studies concentrate on the modification of the surface (chemical composition, hydrophobicity, or topography) neglecting, however, the influence of the bulk material, which always contributes to the overall interaction via van der Waals forces. In this study, we applied AFM force spectroscopy and flow chamber experiments to probe the adhesion of Staphylococcus carnosus to a set of tailored Si wafers, allowing for a separation of short- and long-range forces. We provide experimental evidence that the subsurface composition of a substrate influences bacterial adhesion. A coarse estimation of the strength of the van der Waals forces via the involved Hamaker constants substantiates the experimental results. The results demonstrate that the uppermost layer is not solely responsible for the strength of adhesion. Rather, for all kinds of adhesion studies, it is equally important to consider the contribution of the subsurface.  相似文献   

10.
Very small bubbles which partially coat the surface of particles influence whether or not heterocoagulation between a particle and a bubble occurs. The electrostatic and van der Waals forces of interaction between particles and bubbles were calculated as a function of electrolyte concentration, particle size, and the size and distributions of these very small bubbles present on the particle surface. The height of the surface force barrier was compared with the hydrodynamic pressing force under conditions of flotation. The presence of these very small bubbles has a profound effect on the interaction between particles and bubbles and, in particular, strongly decreases the critical particle radius for heterocoagulation.  相似文献   

11.
In this paper, the reentrainment of nanosized and microsized particles from rough walls under various electrostatic conditions and various hydrodynamic conditions (either in air or aqueous media) is numerically investigated. This issue arises in the general context of particulate fouling in industrial applications, which involves (among other phenomena) particle deposition and particle reentrainment. The deposition phenomenon has been studied previously and, in the present work, we focus our attention on resuspension. Once particles are deposited on a surface, the balance between hydrodynamic forces (which tend to move particles away from the surface) and adhesion forces (which maintain particles on the surface) can lead to particle removal. Adhesion forces are generally described using van der Waals attractive forces, but the limit of these models is that any dependence of adhesion forces on electrostatic forces (due to variations in pH or ionic strength) cannot be reproduced numerically. For this purpose, we develop a model of adhesion forces that is based on the DLVO (Derjaguin and Landau, Verwey and Overbeek) theory and which includes also the effect of surface roughness through the use of hemispherical asperities on the surface. We first highlight the effect of the curvature radius on adhesion forces. Then some numerical predictions of adhesion forces or adhesion energies are compared to experimental data. Finally, the overall effects of surface roughness and electrostatic forces are demonstrated with some applications of the complete reentrainment model in some simple test cases.  相似文献   

12.
The origin of the large relative-humidity (RH) dependence of the adhesion force in the single-asperity contact between silicon oxide surfaces is elucidated. As RH increases, the adhesion force measured with an atomic force microscopy (AFM) initially increases, reaches a maximum, and then decreases at high RH. The capillary force alone cannot explain the observed magnitude of the RH dependence. The origin of the large RH dependence is due to the presence of an icelike structured water adsorbed at the silicon oxide surface at room temperature. A solid-adsorbate-solid model is developed calculating the contributions from capillary forces, van der Waals interactions, and the rupture of an ice-ice bridge at the center of the contact region. This model illustrates how the structure, thickness, and viscoelastic behavior of the adsorbed water layer influence the adhesion force of the silicon oxide nanoasperity contact.  相似文献   

13.
 The adhesion behavior that governs many technologically and biologically relevant polymer properties can be investigated by zeta potential measurements with varied electrolyte concentration or pH. In a previous work [1] it was found that the difference of the adsorption free energies of Cl- and K+ ions correlates with the adhesion force caused by van der Waals interactions, and that the decrease of adhesion strength by adsorption layers can be elucidated by zeta potential measurements. In order to confirm these interrelations, zeta potential measurements were combined with atomic force microscopy (AFM) measurements. Force–distance curves between poly(ether ether ketone) and fluorpolymers, respectively, and the Si3N4 tip of the AFM device in different electrolyte solutions were measured and analysed. The adsorption free energy of anions calculated from the Stern model correlates with their ability to prevent the adhesion between the polymer surface and the Si3N4 tip of the AFM device. These results demonstrate the influence of adsorption phenomena on the adhesion behavior of solids. The results obtained by AFM confirm the thesis that the electrical double layer of solid polymers in electrolyte solutions is governed by ion adsorption probably due to van der Waals interactions and that therefore van der Waals forces can be detected by zeta potential measurements. Received: 18 November 1997 Accepted: 19 January 1998  相似文献   

14.
Mechanisms of energy dissipation during solid-solid and solid-liquid friction are discussed. A conservative van der Waals adhesion force, when combined with surface imperfectness, such as deformation, leads to adhesion hysteresis (AH). When an asperity slides upon a substrate, the substrate is subjected to a loading-unloading cycle, and energy is dissipated due to the AH. Another mechanism, which leads to energy dissipation, involves energy barriers between metastable states due to surface roughness. Both mechanisms are fundamental for sliding and result in both solid-liquid and solid-solid friction.  相似文献   

15.
Two key steps in kidney stone formation--crystal aggregation and attachment to renal tissues--depend on the surface adhesion properties of the crystalline components. Anhydrous uric acid (UA) is the most common organic crystalline phase found in human kidney stones. Using chemical force microscopy, the adhesion force between various functional groups and the largest (100) surface of UA single crystals was measured in both aqueous solution and model urine. Adhesion trends in the two solutions were identical, but were consistently lower in the latter. Changes in the solution ionic strength and pH were also found to affect the magnitude of the adhesion. UA surfaces showed the strongest adhesion to cationic functionalities, which is consistent with ionization of some surface uric acid molecules to urate. Although hydrogen-bonding and van der Waals interactions are usually considered to be dominant forces in the association between neutral organic compounds, this work demonstrates that electrostatic interactions can be important, particularly when dealing with weak acids under certain solution conditions.  相似文献   

16.
The results and implications of direct force measurements between molecularly smooth mica surfaces in liquids are reviewed. These discussions include four interactions fundamental to colloid science: van der Waals forces, double layer forces, adhesion forces and structural or solvation forces (e.g. hydration forces). Also considered are the effects of preferential surface adsorption of solute molecules on these interactions, e.g. surfactant adsorptions from aqueous solutions and water condensation from non-aqueous solvents.In aqueous media it is apparent that the DLVO theory is valid at all surface separations down to the “force barrier”, but that under certain conditions hydration forces can become significant at distances below 30 Å.The measured adhesion force between two solid surfaces can be simply related to their surface energies and where meniscus forces are also present due to “capillary condensation” from vapor solvent, their effect on adhesion can be understood in terms of straightforward bulk thermodynamic principles. Here, too, it is concluded that structural forces cannot be ignored.Our results suggest that structural forces may either very monotonically with distance or be oscillatory with a periodicity equal to the molecular size. Their origin, nature, mode of action and importance for particle interactions will no doubt take many years to sort out.  相似文献   

17.
We have measured interactions between hydrophilic and hydrophobic surfaces in an aqueous medium at various pH and ionic strengths as well as in some organic solvents using atomic force microscopy and analyzed them in terms of particle adhesion and detachment from surfaces. In hydrophilic systems the forces observed were found to be well described by DLVO theory at large separation distances. Very long range hydrophobic forces were not observed in hydrophilic-hydrophobic systems. Nevertheless, the jump into contact was found to occur at distances greater that those predicted by just van der Waals attraction. The interaction between two hydrophobic surfaces was dominated by the long-range attraction due to hydrophobic forces. This interaction was found to be sensitive to the type of substrate as well as to the pH and electrolyte concentration. Measured pull-off forces showed poor reproducibility. However, average values showed clear trends and were used to estimate interfacial energies or work of adhesion for all systems studied by means of the Derjaguin approximation. These values were compared to those calculated by the surface tension component theory using the acid-base approach. Good qualitative agreement was obtained, giving support for the usefulness of this approach in estimating interfacial energies between surfaces in liquid media. A comparison of the measured adhesion force with hydrodynamic detachment experiments showed good qualitative agreement. Copyright 2001 Academic Press.  相似文献   

18.
Control of adhesion is a crucial aspect in the design of microelectromechanical and nanoelectromechanical devices. To understand the dependence of adhesion on nanometer-scale surface roughness, a roughness gradient has been employed. Monomodal roughness gradients were fabricated by means of silica nanoparticles (diameter ~12 nm) to produce substrates with varying nanoparticle density. Pull-off force measurements on the gradients were performed using (polyethylene) colloidal-probe microscopy under perfluorodecalin, in order to restrict interactions to van der Waals forces. The influence of normal load on pull-off forces was studied and the measured forces compared with existing Hamaker-approximation-based models. We observe that adhesion force reaches a minimum value at an optimum particle density on the gradient sample, where the mean particle spacing becomes comparable with the diameter of the contact area with the polyethylene sphere. We also observe that the effect on adhesion of increasing the normal load depends on the roughness of the surface.  相似文献   

19.
Force interactions of porous silica particles against mirror-polished stainless steel surfaces were quantified in the presence of various solvents to facilitate processing of ceramics with less reliance on organic aids which subsequently need to be burned off. The results were compared to and found to be in good agreement to idealized models of van der Waals force interactions. Significantly, van der Waals attractive forces between steel surfaces and silica surfaces were minimized through the use of tetrahydrofuran and enhanced using methanol. The solvent selections were further extended to settling behavior and were found to follow the general trends determined by Stokes law. The methods presented herein can be extended to other real-world systems.  相似文献   

20.
The atomic force microscope has been used to investigate normal surface forces and lateral friction forces at different concentrations of sodium oleate, a frequently used fatty acid in the deinking process. The measurements have been performed using the colloidal probe technique with bead materials consisting of cellulose and silica. Cellulose was used together with a printing ink alkyd resin and mica, whereas silica was used with a hydrophobized silica wafer. The cellulose-alkyd resin system showed stronger double layer repulsion and the friction was reduced with increasing surfactant concentration. The adhesive interaction disappeared immediately on addition of sodium oleate. The normal surface forces for cellulose-mica indicated no apparent adsorption of the sodium oleate however, the friction coefficient increased on addition of sodium oleate, which we ascribe to some limited adsorption increasing the effective surface roughness. The silica-hydrophobic silica system showed a completely different surface force behavior at the different concentrations. An attractive hydrophobic interaction was evident since the surfaces jumped into adhesive contact at a longer distance than the van der Waals forces would predict. The strong adhesion was reflected in the friction forces as a nonlinear relationship between load and friction and a large friction response at zero applied load. Indirect evidence of adsorption to the hydrophilic silica surface was also observed in this case, and QCM studies were performed to confirm the adsorption of material to both surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号