首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bulk gold has long been regarded as a noble metal, having very low chemical and catalytic activity. However, metal oxide-supported gold particles, particularly those that are less than 5 nm in diameter, have been found to have remarkable catalytic properties. In this study we show that impinging gas-phase CO molecules react readily with oxygen adatoms preadsorbed on Au/TiO(2)(110) to produce CO(2) even under conditions in which the sample is cryogenically cooled. Gold particle size seems to have little effect on the CO oxidation reaction when oxygen adatoms are preadsorbed. We also show that as the oxygen adatom coverage increases, the rate of CO oxidation decreases on Au/TiO(2) at cryogenic temperatures.  相似文献   

2.
Crystalline and amorphized MOFs (Cu(3)(BTC)(2)) have been demonstrated to be excellent catalysts for CO oxidation. The catalytic activity can be further improved by loading PdO(2) nanoparticles onto the amorphized Cu(3)(BTC)(2).  相似文献   

3.
The sunlight-induced photocatalytic oxidation of aqueous benzene on TiO(2)-supported gold nanoparticles was considerably improved when the reaction was conducted under a CO(2) atmosphere. 13% yield and 89% selectivity of phenol was obtained on P25-supported gold nanoparticles under 230 kPa of CO(2).  相似文献   

4.
Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts   总被引:1,自引:0,他引:1  
Photoinduced reduction of CO2 by H2O to produce CH4 and CH3OH has been investigated on wellcharacterized standard TiO2 catalysts and on a Cu2+ loaded TiO2 catalyst. The efficiency of this photoreaction depends strongly on the kind of catalyst and the ratio of H2O to CO2. Anatase TiO2, which has a large band gap and numerous surface OH groups, shows high efficiency for photocatalytic CH4 formation. Photogenerated Ti3+ ions, H and CH3 radicals are observed as reactive intermediates, by ESR at 77 K. Cu-loading of the small, powdered TiO2 catalyst (Cu/TiO2) brings about additional formation of CH3OH. XPS studies suggest that Cu+ plays a significant role in CH3OH formation.  相似文献   

5.
Planar model catalysts were prepared by deposition of size-selected gold clusters containing up to seven atoms on rutile TiO2 (110). Molecular oxygen is observed to bind inefficiently to the surface, probably at oxygen vacancies, and some oxygen also appears to bind to the gold clusters. Stable CO binding is observed atop gold for catalysts prepared by Au and Au2 deposition, but not for larger Aun. CO oxidation activity is strongly dependent on cluster size, with Au7-prepared samples >50 times more reactive than samples prepared by Au or Au2 deposition  相似文献   

6.
Economic production of titanium dioxide (yield >98 %) from ilmenite has been achieved by use of a modified sulfate reduction process. A series of samples were prepared by varying the concentration of titanium dioxide nuclei (0.2, 0.3, and 0.6 %) and further impregnation with antimony and vanadia. The structural and acidic properties of the samples were comprehensively studied by X-ray diffraction (XRD), transmission electron microscopy, BJH pore size distribution, and temperature-programmed desorption of NH3. The XRD results revealed the presence of intense peaks from anatase titanium dioxide. Enhancement of surface area was observed for second-time filtered samples, possibly because of loss of iron from the bulk. As a result, formation of additional micropores was apparent from N2 adsorption and desorption isotherms. Among all the antimony and vanadia-doped samples, the first-time filtered sample with the low concentration of nuclei (0.2 %) had the highest catalytic activity at low temperatures, owing to its larger pore size and abundant acidic species.  相似文献   

7.
The adsorption of CO on Al2O3- and SiO2-supported Ru catalysts has been investigated through FTIR spectroscopy. Deconvolution of the spectra obtained reveals the presence of 11 distinct bands in the case of Ru/Al2O3 and 10 bands in the case of Ru/SiO2, which were assigned to different carbonyl species adsorbed on reduced as well as partially oxidized Ru sites. Although most of these bands on both supports are similar, they exhibit substantial differences in terms of stability. In general, the analogous CO species on Ru/Al2O3 are adsorbed stronger than those on Ru/SiO2, with the most stable species observed being a dicarbonyl adsorbed on metallic Ru (i.e., Ru0(CO)2). Following sintering of the Ru, the ratio of multicarbonyl to monocarbonyl adsorption is reduced substantially because of the lack of isolated sites or small Ru clusters that enable the formation of multicarbonyl species via oxidative disruption. Finally, in the presence of O2, the main features observed correspond to monocarbonyl, dicarbonyl, and tricarbonyl species adsorbed on partially oxidized Run+. The intensities of all bands decrease drastically at temperatures above 210 degrees C because of the onset of CO oxidation, which results in substantially reduced surface coverage.  相似文献   

8.
Density functional theory was used to study the CO oxidation catalytic activity of CeO(2)-supported Au nanoparticles (NPs). Experimental observations on CeO(2) show that the surface of CeO(2) is enriched with oxygen vacancies. We compare CO oxidation by a Au(13) NP supported on stoichiometric CeO(2) (Au(13)@CeO(2)-STO) and partially reduced CeO(2) with three vacancies (Au(13)@CeO(2)-3VAC). The structure of the Au(13) NP was chosen to minimize structural rearrangement during CO oxidation. We suggest three CO oxidation mechanisms by Au(13)@CeO(2): CO oxidation by coadsorbed O(2), CO oxidation by a lattice oxygen in CeO(2), and CO oxidation by O(2) bound to a Au-Ce(3+) anchoring site. Oxygen vacancies are shown to open a new CO oxidation pathway by O(2) bound to a Au-Ce(3+) anchoring site. Our results provide a design strategy for CO oxidation on supported Au catalysts. We suggest lowering the vacancy formation energy of the supporting oxide, and using an easily reducible oxide to increase the concentration of reduced metal ions, which act as anchoring sites for O(2) molecules.  相似文献   

9.
Hydrogen is dissociatively adsorbed on the gold particles in Au/Al(2)O(3) catalysts, as demonstrated by a combination of in-situ X-ray absorption spectroscopy, chemisorption, and H/D exchange experiments. This chemisorption of hydrogen induces changes in the Au L(3) and L(2) X-ray absorption near-edge structures. The gold atoms on corner and edge positions dissociate the hydrogen, which does not spill over to the face sites. Therefore, the average number of adsorbed hydrogen atoms per surface gold atom increases with decreasing particle size. With temperature, the hydrogen uptake by supported gold increases or remains constant, whereas it decreases for platinum. Furthermore, in H/D exchange experiments, the activity of Au/Al(2)O(3) increases strongly with temperature. Thus, the dissociation and adsorption of hydrogen on gold is activated.  相似文献   

10.
In this study we present results of an investigation into the reactivity of molecularly chemisorbed oxygen species on a Au/TiO2 model catalyst. We have previously shown that a Au/TiO2 model catalyst sample can be populated with both atomically and molecularly chemisorbed oxygen species following exposure to a radio frequency-generated oxygen plasma-jet. To test the reactivity of the molecularly chemisorbed oxygen species, we compare the CO2 produced from a sample that is populated with both oxygen species to the CO2 produced from a sample that has been given an identical exposure but has been cleared of molecularly chemisorbed oxygen employing collision-induced desorption. We observe that samples that are populated with both oxygen species consistently result in greater CO2 production. For the data presented in this paper, we observe a difference of 41% in the CO2 production. We interpret this result to indicate that molecularly chemisorbed oxygen can react directly with CO to form CO2.  相似文献   

11.
在定量的瞬时产物分析(TAP)反应器中,于80 oC下采用CO脉冲和O2脉冲补充等方法,研究了高温(400 oC)焙烧的Au/TiO2催化剂上活性氧物种的移除反应活性,特别是活性氧物种的性质。以往的研究大多关注的是CO催化氧化反应中活性氧物种及其性质,在典型的反应条件下该物种的形成和消除是可逆的;而本研究表明,催化剂直接焙烧后就存在额外的氧物种;该物种对CO氧化反应也具有活性,但其在典型的反应条件下不生成或生成很少。基于此,讨论了Au/TiO2催化剂上CO氧化反应的机理,特别是不同活性氧物种的作用。  相似文献   

12.
Thin TiO2 layers were deposited onto a carbon-supported Ni catalyst (Ni/C) through atomic layer deposition (ALD) and the resulting TiO2-coated Ni/C (ALD(TiO2)-Ni/C) was utilized for electrochemical glycerol oxidation in alkaline media. X-ray photoelectron spectroscopy analysis demonstrated that the Ni surface phase of ALD(TiO2)-Ni/C mainly consisted of Ni(OH)2 while that of uncoated Ni/C was a mixed phase of NiO and Ni(OH)2. The ALD(TiO2)-Ni/C exhibited electrocatalytic activity at least 2.4 times higher than that of Ni/C. Density functional theory calculations were used to investigate how the modified Ni surface with the TiO2 coating affects the adsorption/desorption of glycerol.  相似文献   

13.
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.  相似文献   

14.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC.  相似文献   

15.
Cu-Pd/Al2O3 bimetallic catalysts have been characterized by XRD, TEM, and EDX techniques. The surface structure has been investigated by FT-IR spectroscopy of low-temperature adsorbed CO in the reduced and in the oxidized state. Evidence has been provided of the formation of Cu-Pd alloy nanoparticles, both of the alpha-phase (disordered fcc) and of the beta-phase (ordered CsCl-type). IR spectra suggest that Cu likely decorates the edges while Pd mostly stays at the main faces. Part of copper disperses as Cu+ on the support even after reduction. The presence of copper seems to modify strongly the sate of oxidized Pd centers in oxidized high-Pd content materials. The redox chemistry of the system, where Pd is reduced more easily than Cu, appears to be very complex.  相似文献   

16.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

17.
Co-precipitation method was adopted to prepare Sn–Ta mixed oxide catalysts with different Sn/Ta molar ratios and used for CO oxidation. The catalysts were investigated by N2-Brunauer–Emmett–Teller (N2-BET), X-ray diffraction patterns (XRD), H2-temperature programmed reduction (H2-TPR), Thermal Gravity Analysis – Differential Scanning Calorimetry (TGA–DSC) techniques. It is revealed that a small amount of Ta cations can be doped into SnO2 lattice to form solid solution by co-precipitation method, which resulted in samples having higher surface areas, improved thermal stability and more deficient oxygen species on the surface of SnO2. As a result, those Sn rich Sn–Ta solid solution catalysts with an Sn/Ta molar ratio higher than 4/2 showed significantly enhanced activity as well as good resistance to water deactivation. It is noted here that if tantala disperses onto SnO2 surface instead of doping into its lattice, it will then have negative effect on its activity.  相似文献   

18.
Comparative results (specific area, metallic dispersion, and activity in the carbon monoxide oxidation) on sol-gel and impregnated Pt/TiO2 catalysts are presented. In order to explain the important differences between the two preparations, among them high resistivity of sol-gel catalyst to sintering, the formation of anchored and/or partially buried particles into the support is proposed.  相似文献   

19.
Activation of Au/TiO2 catalyst for CO oxidation   总被引:2,自引:0,他引:2  
Changes in a Au/TiO(2) catalyst during the activation process from an as-prepared state, consisting of supported AuO(x)(OH)(4-2x)(-) species, were monitored with X-ray absorption spectroscopy and FTIR spectroscopy, complemented with XPS, microcalorimetry, and TEM characterization. When the catalyst was activated with H(2) pulses at 298 K, there was an induction period when little changes were detected. This was followed by a period of increasing rate of reduction of Au(3+) to Au(0), before the reduction rate decreased until the sample was fully reduced. A similar trend in the activation process was observed if CO pulses at 273 K or a steady flow of CO at about 240 K was used to activate the sample. With both activation procedures, the CO oxidation activity of the catalyst at 195 K increased with the degree of reduction up to 70% reduction, and decreased slightly beyond 80% reduction. The results were consistent with metallic Au being necessary for catalytic activity.  相似文献   

20.
COx(x=1,2)and O2 chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O2-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in COx and O2 chemistry,including CO oxidation,CO2 reduction reaction(CO2RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO2RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in COx and O2 chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号