首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper discusses the mechanisms of origin of ion current noise in a mass spectrometer owing to gas dynamic processes in the interface. It has been shown that the effect can be strong for a so-called ‘short’ interface, where the distance between the sampler outlet, that is, the nozzle or transportation capillary, is of the same size as the Mach barrel length, which would take place if the gas can extend freely. The spectra of gas dynamic noises have been computed in the axially symmetric approach for the above interfaces; the computed noise spectra have been shown to correlate well with those measured for total ion current to the interface skimmer.  相似文献   

2.
A high pressure matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) ion source was designed and tested. With this design, pressure is pulsed to an estimated 1-10 mbar in the region of the MALDI sample during desorption with the result of significantly decreased fragmentation compared to similar systems operating with pressures of <0.1 mbar. The thermal stabilization of vibrationally excited ions under these conditions is shown with small peptides desorbed from the "hot" matrix alpha-cyano-4-hydroxycinnamic acid, and with the highly labile oxidized beta-chain of insulin. Fragile gangliosides with several sialic acid residues are desorbed under high pressure and remain intact without the typical losses of sialic acid, and a protein standard, ubiquitin (8565.64 Da), is desorbed with minimal dehydration. Under high pressure collisional cooling conditions, non-covalent matrix adduction to the molecular ions becomes prominent, but with the trapped ions in an FT mass spectrometer, the ions can be mildly activated to detach the matrix adducts. The new source, additionally, generates significant levels of the multiply charged ions which are commonly seen in MALDI-TOFMS, but are rarely observed in MALDI-FTMS. This effect is more likely due to the elimination of a mass filtering effect in the previous FTMS ion source than to collisional cooling of the ions.  相似文献   

3.
The high‐sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx? (x = 2,3), O3 and HNO3 originating from plasma‐excited air were suggested to contribute to the formation of [TNT ? H]? (m/z 226), [TNT ? NO]? (m/z 197) and [TNT ? NO + HNO3]? (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we describe results based on the combination of atmospheric pressure photoionization (APPI) with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The main purpose of combining more than one ionizer is to extend the range of compounds that can be simultaneously analyzed. Three modes of operation are presented; use of either ionizer, simultaneous use of two ionizers, and rapid switching between ionizers during a single chromatographic run. The dual ionizer configurations only minimally affect the performance of either ionizer relative to the standard single-ionizer sources. However, it is observed that the operation of both ionizers together does not typically give the sum signal from either source operating alone. For APCI/APPI the signal can range from less than that of either source alone to the sum of the two individual sources. For ESI/APPI, we observed large suppressions of the ESI multiply-charged signal of proteins when the APPI source was on. These behaviors are presumed to be due to the interaction of the initially formed ions by both sources and attests to the importance of ion-molecule reactions that occur during and after the primary ionization events. We give examples of compounds that are preferentially ionized by either APPI, APCI or ESI and present thermochemical arguments based on molecular structure and functionality to explain this behavior. The dual source is also shown to be able to operate in negative ion mode opening up the potential to conduct wide ranging chemical analyses.  相似文献   

5.
The results of a study on interfacing an Orbitrap mass analyzer with direct ion injection to a surface assisted laser desorption/ionization (SALDI) ion source are presented. Osmium complexes with 8-mercaptoquinoline were studied. Titanium oxide thin films prepared by electron beam evaporation were found an effective emitter of the ions of the test complexes. It was demonstrated that interfacing the Orbitrap mass analyzer to a SALDI source can significantly improve the analytical performance of this method in comparison to a typical combination of SALDI/time-of-flight mass spectrometer.  相似文献   

6.
The effect of laser exposure (the number of laser shots) on the stability of production of matrix (gentisic acid, sinapinic acid, nicotinic acid and benzoic acid) and biomolecule (insulin and cytochrome-c) ions is presented. Two methods of sample preparation, dried-droplet and pressure, were examined. In the case of pressure preparation, the dry powder sample was pressed mechanically with a pressure of 30 MPa. The best results were obtained for the pressure method and gentisic acid as matrix.  相似文献   

7.
8.
When atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) became commercially available, the technique generated a great deal of interest because ion production was decoupled from mass analysis. Mass accuracy and resolution were therefore dependent on parameters governing the mass analyzer rather than the matrix and sample preparation. Researchers have successfully used AP-MALDI sources with both orthogonal acceleration time-of-flight (oaTOFMS) and ion trap mass spectrometers. However, one limitation of the technique has been sensitivity, especially for mixtures of peptides generated from tryptic digests. In this work, data are presented documenting an increase in sensitivity of approximately two orders of magnitude as compared with results previously reported in the literature. The improvement in sensitivity is thought to derive primarily from the novel use of a countercurrent heated gas stream directed at the sample, although the target plate position and ion sampling configuration have also been optimized to reduce chemical noise from low molecular weight ions. A tryptic digest of BSA containing 125 attomoles on the plate was successfully identified in MS-only mode, while MS/MS analysis of 250 attomoles of the same digest provided product ion spectra with sufficient information to identify the protein. More complicated mixtures of standard proteins were used to model proteomics experiments, and preliminary data suggest a minimum working dynamic range of 20-fold for the analysis of mixtures of protein digests.  相似文献   

9.
The effect of nine different eluent compositions on the ionization efficiency of five flavonoids was studied using ion spray (IS), atmospheric pressure chemical ionization (APCI), and the novel atmospheric pressure photoionization (APPI), in positive and negative ion modes. The eluent composition had a great effect on the ionization efficiency, and the optimal ionization conditions were achieved in positive ion IS and APCI using 0.4% formic acid (pH 2.3) as a buffer, and in negative ion IS and APCI using ammonium acetate buffer adjusted to pH 4.0. For APPI work, the eluent of choice appeared to be a mixture of organic solvent and 5 mM aqueous ammonium acetate. The limits of detection (LODs) were determined in scan mode for the analytes by liquid chromatography/mass spectrometry using IS, APCI and APPI interfaces. The results show that negative ion IS with an eluent system consisting of acidic ammonium acetate buffer provides the best conditions for detection of flavonoids in mass spectrometry mode, their LODs being between 0.8 and 13 microM for an injection volume of 20 microl.  相似文献   

10.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap mass spectrometry have been used to study the fragmentation behavior of native peptides and peptide derivatives prepared for de novo sequencing applications. Sulfonic acid derivatized peptides were observed to fragment more extensively and up to 28 times more efficiently than the corresponding native peptides. Tandem mass spectra of native peptides containing aspartic or glutamic acids are dominated by cleavage on the C-terminal side of the acidic residues. This significantly limits the amount of sequence information that can be derived from those compounds. The MS/MS spectra of native tryptic peptides containing oxidized Met residues show extensive loss of CH(3)SOH and little sequence-specific fragmentation. On the other hand, the tandem mass spectra of derivatized peptides containing Asp, Glu and oxidized Met show much more uniform fragmentation along the peptide backbone. The AP-MALDI tandem mass spectra of some derivatized peptides were shown to be qualitatively very similar to the corresponding vacuum MALDI postsource decay mass spectra, which were obtained on a reflector time-of-flight instrument. However, the ion trap mass spectrometer offers several advantages for peptide sequencing relative to current reflector time-of-flight instruments including improved product ion mass measurement accuracy, improved precursor ion selection and MS(n). These latter capabilities were demonstrated with solution digests of model proteins and with in-gel digests of 2D-gel separated proteins.  相似文献   

11.
12.
The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.  相似文献   

13.
A simple ion source was constructed for in-beam ionization by alkali ion attachment. A wire probe covered with sample was placed near an alkali ion emitter prepared from a mixture of silica gel and alkali halides. The ionization of various thermally labile compounds and of mixtures was investigated. Na+ proved to be the most suitable alkali ion for cationization. For monosaccharides experiments revealed the elimination of water upon ionization by Li+ attachment. The experimental set-up was also examined for measuring the heat of sublimation of organic solids.  相似文献   

14.
An atmospheric pressure ionization source based on desorption electrospray ionization technology for a bench-top hybrid FTICR mass spectrometer is described. The ion source was characterized using low-molecular-weight-weight pharmaceutical samples. The dependences of signal intensities on various experimental parameters (solvent composition, surface temperature, spray voltage, etc.) were studied. Based on the results obtained, plausible mechanisms of desorption electrospray ionization for the analytes under the study are discussed.  相似文献   

15.
16.
The use of an atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) source was employed with an atmospheric pressure ion mobility spectrometer (APIMS) and an orthogonal acceleration reflector time-of-flight mass spectrometer (TOFMS) to analyze dipeptide and biogenic amine mixtures from a liquid glycerol 2,5-dihydroxybenzoic acid (DHB) matrix. Improved sensitivities were obtained by the addition of a localized electrical (corona) discharge in conjunction with the AP-MALDI source. Enhanced sample ionization efficiency created by this combination provided an overall elevation in signal intensity of approximately 1.3 orders in magnitude. Combinations of three dipeptides (Gly-Lys, Ala-Lys, and Val-Lys) and nine biogenic amines (dopamine, serotonin, B-phenylethylamine, tyramine, octopamine, histamine, tryptamine, spermidine, and spermine) were resolved in less than 18 ms. In many cases, reduced mobility constants (K(o)) were determined for these analytes for the first time. Ion mobility drift times, flight times, arbitrary signal intensities, and collision-induced dissociation (CID) fragmentation product signatures are reported for each of the samples.  相似文献   

17.
A novel surface ionization source for ion mobility spectrometer   总被引:1,自引:0,他引:1  
A surface ionization (SI) source is designed and prepared for ion mobility spectrometer (IMS). The source acts not only as an emitter but also an ion injector which can inject ions periodically into the drift region of drift tube. Using the dual-role source, the dimension of the drift tube can be decreased and the circuit for high voltage can be simplified efficiently. The IMS with the SI source has a response range of ∼4 orders of magnitude and a good reproducibility to tri-ethylamine. Compared with radioactive ionization (RI), the ultra-short time for ion injection and the zero level base line of ion mobility spectrum are characteristics of the surface ionization.  相似文献   

18.
Summary A laser ion source has been set up which is based on resonant stepwise excitation and ionization of atomic vapor confined in an ionization chamber. Using a pulsed copper vapor/dye laser system with a high repetition rate (6.5 kHz) one expects high efficiency and high selectivity for this new type of ion source. First test experiments with lead are reported.
Eine Laserionenquelle zur Spurenanalyse
  相似文献   

19.
We gauged the internal energy transfer for two dissociative ion decomposition channels in matrix-assisted laser desorption ionization (MALDI) using the benzyltriphenylphosphonium (BTP) thermometer ion [PhCH 2PPh 3] (+). Common MALDI matrixes [alpha-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5-dihydroxycinnamic acid (DHB)] were studied with nitrogen laser (4 ns pulse length) and mode-locked 3 x omega Nd:YAG laser (22 ps pulse length) excitation. Despite the higher fluence required to initiate fragmentation, BTP ions indicated lower internal energy transfer with the picosecond laser in all three matrixes. These differences can be rationalized in terms of phase explosion induced by the nanosecond laser vs a stress-confinement-driven desorption mechanism for the picosecond laser. For the two ion production channels of the BTP thermometer ion, breaking a single bond can result in the formation of benzyl/tropylium ions, F1, or triphenylphosphine ions, F2. In SA and DHB, as well as in CHCA at low fluence levels, the efficiency of these channels (expressed by the branching ratio I F1/ I F2) is moderately in favor of producing tropylium ions, 1 < I F1/ I F2 < 6. As the laser fluence is increased, for CHCA, there is a dramatic shift in favor of the tropylium ion production, with I F1/ I F2 approximately 30 for the nanosecond and the picosecond laser, respectively. This change is correlated with the sudden increase in the BTP internal energies in CHCA in the same laser fluence range. The large changes observed in internal energy deposition for CHCA with laser fluence can account for its ability to induce fragmentation in peptides more readily than SA and DHB.  相似文献   

20.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号