共查询到2条相似文献,搜索用时 0 毫秒
1.
Conventional numerical techniques, used to study the acoustics of a car passenger cabin, treat the cabin as an isolated cavity excited by the cavity boundaries. Realistically, other cavity volumes such as the trunk communicate with the cabin through the holes in the parcel shelf of the car. An extended acoustic model of a car is formed by the cavity volumes of the passenger compartment and the trunk as well as air leakages through the holes provided for electrical devices and ventilation on the parcel shelf. In this study, the dynamic influence of air leakages between the passenger and trunk compartments on the first and second coupled system modes was investigated experimentally using acoustic frequency response function. The response to the acoustic excitation was measured for four different configurations of trim and holes of the parcel shelf. The natural frequencies of the first and second coupled system modes increased with increasing holes size with and without the trim of the parcel shelf. The experimental results were in good agreement with the reported results of coupling effects of double cavities connected by a neck. In the low frequency region since the wavelength is longer compared to the holes dimension, these holes act as point sources. 相似文献
2.
This article describes experiments carried out in order to gain a deeper understanding of the mechanisms underlying variation of vocal loudness in singers. Ten singers, two of whom are famous professional opera tenor soloists, phonated at different pitches and different loudnesses. Their voice source characteristics were analyzed by inverse filtering the oral airflow signal. It was found that the main physiological variable underlying loudness variation is subglottal pressure (Ps). The voice source property determining most of the loudness variation is the amplitude of the negative peak of the differentiated flow signal, as predicted by previous research. Increases in this amplitude are achieved by (a) increasing the pulse amplitude of the flow waveform; (b) moving the moment of vocal fold contact earlier in time, closer to the center of the pulse; and (c) skewing the pulses. The last mentioned alternative seems dependent on both Ps and the ratio between the fundamental frequency and the first formant. On the average, the singers doubled Ps when they increased fundamental frequency by one octave, and a doubling of the excess Ps over threshold caused the sound pressure level (SPL) to increase by 8–9 dB for neutral phonation, less if mode of phonation was changed to pressed. A shift of mode of phonation from flow over neutral to pressed was associated with a reduction of the peak glottal permittance i.e., the ratio between peak transglottal airflow to Ps. Flow phonation had the most favorable relationship between Ps and SPL. 相似文献