首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LaCl3提高菠菜光系统Ⅱ活性的作用机制   总被引:2,自引:0,他引:2  
洪法水  王玲  陶冶 《中国化学》2005,23(5):617-621
The effect of LaCl3 on the K3Fe(CN)6 (FeCy) reduction rate and the oxygen-evolving rate of PSU particles of spinach, and the spectral characterization of the D1/D2/Cytb559 of a PSII reaction center complex consisting of three polypeptides from spinach were studied. The experimental results showed that LaCl3 could significantly accelerate the transformation from light energy to electric energy, the electron transport, water photolysis and oxygen evolution of PSII of spinach, which was related to the spectral characterization of the D1/D2/Cytb559 complex.Soret band and Q band of Chl-a of UV-vis spectrum of D1/D2/Cytb559 complex were blue shifted, and the fluorescence emission peak was blue shifted in LaCl3 treated spinach compared with that in the control. The EXAFS (extended X-ray absorption fine structure spectroscopy) revealed that La^3 was coordinated with 8 nitrogen or oxygen atoms in the first coordination shell with La-N or La-O bond length of 0.254 nm, and with 6 nitrogen or oxygen atoms in the second coordination shell with La-N or La-O bond length of 0.321 nm in the D1/D2/Cytb559 complex. The CD suggested that the secondary structure of D1/D2/Cytb559 complex have been litfie affected by the treatment of LaCl3.  相似文献   

2.
It was studied by spectroscopy that PSII reaction center complex consisting of three polypeptides, D1, D2 and Cytb559, were purified from PSII particle of CeCl3 treated spinach. The results of the experiment show that Ce3+ could improve the growth of spinach, and accelerate electron transport of PSII particles. Of chl-a of UV-Vis spectrum of D1/D2/Cytb559 complex, Soret band was blue-shifted by 3 nm and Q band by 2 nm, respectively, and the fluorescence emission peak was blue-shifted by 5 nm in CeCl3-treated spinach compared with the one in control. By the extended X-ray absorption fine structure (EXAFS) spectroscopy methods, it has been found that Ce3+ is coordinated with 8 nitrogen atoms in the first coordination shell with Ce-N bond length of 0.253 nm, and Ce3+ with 6 oxygen atoms in the second coordination shell with Ce-O bond length of 0.32 nm. However, the secondary structure of D1/D2/Cytb559 complex by circular dichroism (CD) spectroscopy has no significant change after CeCl3 treated. It might be that Ce3+ binds to porphyrin rings of chlorophyll and oxygen of amino acid residue of polypeptide in D1/D2/Cytb559 complex, and then accelerates the primary reaction of PSII, intensifies function of P680+ primary electron donor of D1/D2/Cytb559, but there is little change in conformation of PSII reaction center complex.  相似文献   

3.
In our early researches, lanthanum and cerium could enter plant and bind to porphyrin of chlorophyll to form Ln3+-chllorophyll. La and Ce greatly increase photosystem II (PSII) activity and PSII electron transport rate, and the fluorescence emission peaks of PSII are blue-shifted [1—4]. Do REEs coordinate with PSII reaction center complex in vivo? Moreover, do REEs coordinate with D1(30 kD)/D2(32 kD)/Cytb559 (~9 kD) reaction center complex of site of producing pri-mary reaction-p…  相似文献   

4.
Ultrasonic spray pyrolysis method was used to prepare Nb-doped TiO2 porous microspheres with an average diameter of 500 nm for solar photocatalytic applications. The effect of Nb-doping on morphology, structure, surface area, as well as spectral absorption properties of TiO2 microspheres was investigated with SEM, TEM, XRD, Raman spectra, BET, and UV-Vis absorption spectra. The Nb-doping decreased the grain size of TiO2 porous microsphere, and influenced its surface area and pore size distribution dependent on the doping concentration, but changed negligibly the morphology and size of TiO2 microspheres. Moreover, the Nb-doping was observed to extend the spectral absorption of TiO2 into visible spectrum, and the absorption onset was red-shifted for about 88 nm at a doping level of 5% compared to pristine TiO2 microspheres. Under solar or visible irradiation, Nb-doped TiO2 microspheres showed higher photocatalytic activity for methylene blue degradation compared with TiO2 microspheres, which could be ascribed to the extended light absorption range and the suppression of electron-hole pair recombination.  相似文献   

5.
The (Ca1-2xNaxLax)TiO3 (0?x?0.5) A-site substituted perovskite compounds have been synthesized and characterized by XRD and Raman spectroscopy at room temperature. The XRD powder diffraction study suggests that the end-member Na1/2La1/2TiO3 crystallizes in the tetragonal space group I4/mcm. The phase transition from Pbnm to I4/mcm is located between x=0.34 and 0.39 and is driven by the variation of ionic radii at the A-site. The observed Raman modes are in agreement with group theory analysis, and the relationships between the behavior of structural parameters (e.g. Ti-O-Ti bond angle), indicated by long-range order, and the corresponding Raman frequency shifts and intensity evolution, indicated by short-range order, are established and discussed in terms of the radius effect and the mass effect.  相似文献   

6.
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:1:1 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:0.5:0.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO2 was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO2 was 3.5 μmol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.  相似文献   

7.
本工作采用CVD法在阳极氧化TiO2纳米管阵列膜表面沉积一层非晶Si膜,通过退火后得到晶化了的Si膜/TiO2纳米管阵列的复合结构,并初步就其光催化还原CO2制备碳氢化合物的活性进行研究。拉曼光谱(Raman)、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、高分辨透射电子显微镜(TEM)等微结构表征结果表明所制备的TiO2纳米管阵列的厚度为270 nm左右,管直径约为70 nm,管壁厚度约为16 nm。覆盖的Si膜已晶化,其厚度约为300 nm。通过高效液相色谱(HPLC)及总有机碳(TOC)来检测光催化还原液相产物中的甲酸及总有机碳含量,发现负载Si膜后的TiO2纳米管阵列光催化性能有所提高,在装有400cut滤光片氙灯照射2 h下TOC含量从21.2 mg.L-1增长到29.5 mg.L-1,表明Si与TiO2的复合可有效的提高光催化还原CO2的活性,这可能与该异质结结构可增加对光的吸收并且可降低光生空穴-电子对复合有关。光催化循环实验表明所制得的催化剂在循环5次后仍可保持91.6%的催化活性。  相似文献   

8.
Au改性TiO2纳米复合物对人结肠癌细胞的光催化杀伤作用   总被引:2,自引:0,他引:2  
许娟  陈智栋  孙毅  陈春妹  江志裕 《化学学报》2008,66(10):1163-1167
提出了通过TiO2表面修饰纳米Au的方法来提高纳米TiO2光催化杀伤癌细胞的效率. 采用化学还原法合成了Au改性的TiO2 (Au/TiO2)纳米复合物, 并研究了不同掺杂量(1 wt%, 2 wt%, 4 wt%)的Au/TiO2对人结肠癌LoVo细胞的光催化杀伤效应. 结果显示, Au的掺杂大大地提高了TiO2纳米粒子光催化杀伤结肠癌LoVo细胞的效率, 而且Au掺杂量的高低影响Au/TiO2光催化杀伤癌细胞的效率, 掺金量为2%的Au/TiO2对结肠癌LoVo细胞具有最高的光催化杀伤效率. 在光强为1.8 mW/cm2的紫外灯(λmax=365 nm)下光照110 min, 50 μg/mL掺金量为2%的Au/TiO2能够杀死所有的癌细胞, 而同样浓度的TiO2只能杀死70%的癌细胞.  相似文献   

9.
《中国化学快报》2021,32(10):3128-3132
Low-efficiency charge transfer is a critical factor to limit the photocatalytic H2 evolution activity of semiconductor photocatalysts. The interface design is a promising approach to achieve high charge-transfer efficiency for photocatalysts. Herein, a new 2D/2D atomic double-layer WS2/Nb2O5 shell/core photocatalyst (DLWS/Nb2O5) is designed. The atom-resolved HAADF-STEM results unravel the presence of an unusual 2D/2D shell/core interface in DLWS/Nb2O5. Taking advantage of the advanced femtosecond-resolved ultrafast TAS spectra, the average lifetime of charge carriers for DLWS/Nb2O5 (180.97 ps) is considerably shortened as compared to that of Nb2O5 (230.50 ps), strongly indicating that the 2D/2D shell/core interface enables DLWS/Nb2O5 to achieve ultrafast charge transfer from Nb2O5 to atomic double-layer WS2, thus yielding a high photocatalytic H2 evolution rate of 237.6 μmol/h, up to 10.8 times higher than that of pure Nb2O5 nanosheet. This study will open a new window for the development of high-efficient photocatalytic systems through the interface design.  相似文献   

10.
We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8Cs0.2PbI3, we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕμ), and carrier diffusion length (LD) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 μs, high ϕμ of ≈18.56 cm2 V−1 s−1, and long LD of ≈7.85 μm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2PbI4. This carrier diffusion length is comparable to that of some perovskite single crystals (>5 μm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.  相似文献   

11.
Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能   总被引:2,自引:0,他引:2  
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒。利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能。结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍。而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%。  相似文献   

12.
通过对香豆素343(C343)染料敏化TiO2纳米粒子光致电子转移的荧光和拉曼光谱特性的研究表明,C343染料敏化TiO2纳米粒子稳态吸收光谱和稳态荧光光谱的红移归因于从被吸附的C343染料分子激发态和C343/TiO2复合物到TiO2纳米粒子导带的光致电子转移. 由时间分辨荧光光谱确定了C343染料敏化TiO2纳米粒子的逆向电子转移速率常数为τ1=31 ps. C343 染料敏化TiO2纳米粒子体系拉曼光谱的研究表明, 被吸附在界面处的染料分子主链碳键的伸缩振动和碳环的呼吸运动的振动模式对超快界面光致电子转移有着重要的促进作用.  相似文献   

13.
Heterojunction design in a two-dimensional (2D) fashion has been deemed beneficial for improving the photocatalytic activity of g-C3N4 because of the promoted interfacial charge transfer, yet still facing challenges. Herein, we construct a novel 2D/2D Cu3P nanosheet/P-doped g-C3N4 (PCN) nanosheet heterojunction photocatalyst (PCN/Cu3P) through a simple in-situ phosphorization treatment of 2D/2D CuS/g-C3N4 composite for photocatalytic H2 evolution. We demonstrate that the 2D lamellar structure of both CuS and g-C3N4 could be well reserved in the phosphorization process, while CuS and g-C3N4 in-situ transformed into Cu3P and PCN, respectively, leading to the formation of PCN/Cu3P tight 2D/2D heterojunction. Owing to the large contact area provided by intimate face-to-face 2D/2D structure, the PCN/Cu3P photocatalyst exhibits significantly enhanced charge separation efficiency, thus achieving a boosted visible-light-driven photocatalytic behavior. The highest rate for H2 evolution reaches 5.12 μmol·h–1, nearly 24 times and 368 times higher than that of pristine PCN and g-C3N4, respectively. This work represents an excellent example in elaborately constructing g-C3N4-based 2D/2D heterostructure and could be extended to other photocatalyst/co-catalyst system.   相似文献   

14.
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒.利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能.结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍.而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%.  相似文献   

15.
以水热法制备的20% g-C3N4/TiO2(20%为质量分数)为基,将其与不同质量分数的氧化石墨烯(GO)复合制备出可见光催化性能优良的GO/TiO2-g-C3N4三元复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、光致荧光光谱(PL)、瞬态光电流响应等分析测试手段对样品的结构、形貌和光电性能进行表征。研究了不同质量分数GO的加入对GO/TiO2-g-C3N4在可见光下降解亚甲基蓝(MB)溶液的影响。结果表明: g-C3N4/TiO2与GO复合后,锐钛矿相TiO2颗粒形成小团簇附着在g-C3N4和GO片层表面,且当GO含量为15%时,TiO2形成的团簇最小,对可见光的吸收最多且光生电子-空穴对的复合率最低。可见光照射下,15% GO/TiO2-g-C3N4复合材料对MB的降解率在3 h内可达98.4%,且其降解速率常数(0.022 4 min-1)分别是纯TiO2(0.001 5 min-1)和g-C3N4/TiO2(0.002 5 min-1)的15倍和9倍。  相似文献   

16.
This study was focused on the photocatalytic activity of polyaniline (Pani)/iron doped titanium dioxide (Fe–TiO2) composites for the degradation of methylene blue as a model dye. TiO2 nanoparticles were doped with iron ions (Fe) using the wet impregnation method and the doped nanoparticles were further combined with Pani via an in situ polymerization method. For comparison purposes, Pani composites were also synthesized in the presence undoped TiO2. The photocatalyst and the composites were characterized by standard analytical techniques such as FTIR, XRD, SEM, EDX and UV–Vis spectroscopies. Fe–TiO2 and its composites exhibited enhanced photocatalytic activity under ultraviolet light irradiation. Improved photocatalytic activity of Fe–TiO2 was attributed to the dopant Fe ions hindering the recombination of the photoinduced charge carriers. Pani/Fe–TiO2 composite with 30?wt.% of TiO2 nanoparticles achieved 28% dye removal and the discoloration rate of methylene blue for the sample was 0.0025?min?1. FTIR, XRD, SEM, EDX and UV–Vis spectroscopies supported the idea that Fe ions integrated into TiO2 crystal structure and Pani composites were successfully synthesized in the presence of the photocatalyst nanoparticles. The novelty of this study was to investigate the photocatalytic activity of Pani composites, containing iron doped TiO2 and to compare their results with that of Pani/TiO2.  相似文献   

17.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

18.
A Polyaniline (PANI)/TiO2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO2, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO2. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities.  相似文献   

19.
Amorphous TiO2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO2 nanoparticles after TiO2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO2 was achieved via the adhesion of the hydrolyzed species Ti-O to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO2 shell.  相似文献   

20.
Nanosized TiO2 and nano-anatase TiO2 decorated on SiO2 spherical core shells were synthesized by using a sol–gel method. The synthesized pure TiO2 nano particle and TiO2 grafted on SiO2 sphere with various ratios have been characterized for their structure and morphologies by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrophotometry (FTIR) and transmission electron microscopy (TEM). Their surface areas were measured using the BET method. The photocatalytic activity of all nanocomposites was investigated using methylene blue as a model pollutant. The synthesized TiO2/SiO2 particles appeared to be more efficient in the degradation of methylene blue pollutant, as compared to pure TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号