首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Because UV irradiation of proteins can produce reactive oxygen species and exposure to UV light has been implicated in cataractogenesis, the sites of photooxidation of bovine α-crystallin, a major lens protein with molecular chaperone activity, were identified using tandem mass spectrometry (MS/MS). Bovine α-crystallin was irradiated with UV light (293 nm) for 1, 4 and 8 h, digested with trypsin and analyzed by matrix-assisted laser de-sorption ionization, time-of-flight mass spectrometry (MALDI) to identify the oxidized sequences. Tryptic peptides were purified by reverse-phase HPLC and oxidized peptides were sequenced by MS/MS to determine the sites of oxidation. Tryptophan fluorescence decreased exponentially with increasing time of UV exposure and peptides containing residues 1-11 of α-crystallin and 1-11, 12-22 and 57-69 of α-crystallin were determined to be oxidized by shifts of 16 D or multiples of 16 Da above the mass of the unmodified peptide. The MALDI analysis revealed single oxidation of all four sequences, which increased with increasing time of UV exposure and possible double oxidation of α 12-22. The specific sites of photooxidation indicate that the N-terminal regions of α-and β-crystallin are exposed to an aqueous environment and are in the vicinity of tryptophan residues from neighboring subunits.  相似文献   

2.
Hypericin has been reported as a potent photosensitizing agent exhibiting antiviral, antibacterial, antineoplastic activities. Although its photophysics and mode of action are strongly modulated by the binding protein, detailed information about its mechanism of interaction with possible cellular targets, including proteins, is still lacking. Previous in vitro studies demonstrated that hypericin can be uptaken by intact lens and is able to bind to the major lens protein "α-crystallin." In this study, the mechanism of interaction of this potent drug with α-crystallin was studied using the chemical denaturant guanidine hydrochloride (GdnHCl) and the hydrophobic surface probe, 8-anilino-1-naphthalenesulfonic acid (ANS). Fluorescence measurements showed that the increased exposure of tryptophan resulting from partial unfolding of α-crystallin incubated with 1.0 mol L−1 of GdnHCl corresponds to the maximum accessibility of hydrophobic sites to ANS at the same GdnHCl concentration. Interestingly at this additional hydrophobicity of the protein, hypericin exhibited its maximum fluorescence intensity. This in vitro study implied that hydrophobic sites of α-crystallin play a significant role in its interaction with hypericin. The binding between α-crystallin and hypericin was found to be enhanced by partial perturbation of the protein.  相似文献   

3.
MONITORING LIGHT-INDUCED CHANGES IN ISOLATED, INTACT EYE LENSES   总被引:1,自引:0,他引:1  
Fluorescence spectral changes occurring upon irradiation with 300 nm light have been monitored in situ in isolated, intact, whole lenses from the eyes of several species. The findings corroborate observations on other individual constituent protein molecules in the solution state, and also reveal features attributable to the supramolecular protein assembly that exists in the whole lens. Irradiation of the lens with 300 nm light causes red shifts in the tryptophan emission spectrum, suggesting alterations in the protein packing in the lens. Intermolecular energy transfer from tryptophan to one of the photoproducts, presumably N-formylkynurenine (N-FK), occurs in the condensed-phase sample. The N-FK formed is photodegraded efficiently in the lens, indicating that the photodynamic effects of endogenous N-FK might not be as severe as has been thought. Species variation in the photoevents are evident, particularly in avian lenses that contain the variant δ-crystallin as the core protein. The photoinduced changes in the near-UV circular dichroism of δ-crystallin (which is α-helical, as opposed to the β-sheet structure of α-, β-, and -γ-crystallins), isolated from chicken lenses, are remarkably different from other crystallins. Irradiation of δ-crystallin leads to a drastic reduction of circular dichroism intensity in the 250–300 nm region, whereas no changes are seen in the peptide absorption band.  相似文献   

4.
The conformational changes of the bovine lens protein "α-crystallin" have been investigated in the presence of the photosensitizer Rose Bengal (RB), in the dark as well as after visible light irradiation. Absorption and fluorescence emission spectra of RB [5 × 10−6  m ] and Fourier transform-IR spectra of α-crystallin [5 mg mL−1] were significantly altered upon RB α-crystallin complex formation. RB was found to bind to α-crystallin in a molecular pocket characterized by a low polarity, with Trp most likely involved in this interaction. The binding constant ( K b) has been estimated to be of the order of 2.5 (mg/mL)−1. The intrinsic fluorescence of α-crystallin was quenched through both dynamic and static mechanisms. Light-induced photosensitized effects showed structural modifications in α-crystallin, including tertiary and secondary structure (an increase in unordered structure) alterations. Notwithstanding those photoinduced structural variations detected in α-crystallin when complexed with RB, the protein still retains its ability to play the role of chaperone for β-crystallin.  相似文献   

5.
An ascorbate-FeCl3-EDTA-H2O2 system was used to oxidize rat lens α-crystallins. Under this oxidative insult, the chaperone activity of α-crystallin toward γ-crystallin was shown to decrease significantly, which is quite different from the result reported by Wang and Spector. (Invest. Ophthalmol. Vis. Sci. 1995 , 36, 311-321.) Fluorescence spectroscopy and circular dichroism were employed to characterize the structural changes of oxidized α-crystallin. It was found that fluorescence intensity of l-anilinonaphthalene-8-sul-phonate (ANS) bound to oxidized α-crystallin increased comparing to that bound to normal α-crystallin, suggesting oxidation causes the exposure of more hydrophobic regions. Further, α-crystallin's fluorescence intensity in response to tryptophan residues showed a pseudo first order decline. Amino acid analysis of normal versus oxidized α-crystallin confirmed actual decline in tryptophan levels, showing about 80% of tryptophan being modified after 10-hour oxidation. Circular dichroism showed both changes in the secondary and tertiary structures of oxidized α-crystallin, characterized by a large loss of aromatic-type amino acid interactions and a large loss of β-sheet structure. In conclusion, modified tryptophan, secondary and tertiary structural changes of α-crystallin correlate best with the reduction of chaperone function, the curves all showing a linear slope for 10 hours, then plateauing. These results indicate that the decrease of α-crystallin chaperone activity is attributed to the structural changes.  相似文献   

6.
The effect of 300 nm irradiation on the three lens crystallins, α-, β-, and γ-, was studied by using fluorescence and circular dichroism techniques. α-Crystallin showed a pronounced change in tertiary structure as manifested in fluorescence and circular dichroism measurements. This finding is in agreement with our earlier findings that the tryptophan residues of α-crystallin are more exposed than those of the other two crystallins. The results of studies using inhibitors specific for the different active species of oxygen suggest that H2O2-mediated damage is involved in the change of tertiary structure of the proteins. Analyses of circular dichroism spectra indicate that, upon irradiation, the secondary structure of α-crystallin remains virtually unaltered, and that the change in tertiary structure results primarily from photoinduced damage to the tryptophan residues.  相似文献   

7.
Abstract— The effect of 300 nm irradiation on the sulfhydryl groups of calf lens a-crystallin has been investigated by using specific, covalently bound fluorescent sulfhydryl probes 4–(N-iodoacetoxy)ethyl-N-methylamino-7-n-itrobenz-2-o-xa-1,3-d-iazole (IANBD), N-iodoacetyl-N'-(5-s-ulfo-l-naphthyl) ethylene-diamine (1,5 IAEDANS) and 5-i-odoacetamidofluorescein (IAF). The decrease in tryptophan fluorescence with time of irradiation of a-crystallin, is accompanied by a decrease in the fluorescence of the hydrophobic sulfhydryl label IANBD. In addition, the fluorescence of the surface-sulfhydryl label IAF increased in the irradiated a-crystallin. These results indicate that the sulfhydryl groups are in a more exposed (hydrophilic) environment in the irradiated protein than in the control, possibly because of partial unfolding of the protein. This result is confirmed by fluorescence lifetime measurements with IAEDANS. The decay curve of IAEDANS-α-crystallin has a major lifetime of 15.7 ns and a minor one of 24.6 ns. Upon irradiation, the lifetime of the major component decreases to 10.2 ns and that of the minor component to 21.7 ns. Denatured IAEDANS-α-crystallin has a single lifetime of 10.4 ns. These results show that the photoinduced damage to the tryptophan residues of α-crystallin alters the environment of the sulfhydryl groups and induces a change in the tertiary structure of the protein. Proximity of the cysteine residues to tryptophan in the tertiary structure of the protein may be an important determinant of their susceptibility to photoinduced change.  相似文献   

8.
Analysis of protein oxidation is necessary in numerous areas of biochemistry, including hydroxyl radical surface mapping, oxidative stress assays, and pharmaceutical stability testing. Mass spectrometry is one of the tools most often used to identify protein oxidation products, and previous studies have attempted to identify and characterize all of the major oxidation products detected by mass spectrometry for each amino acid residue. In this note, we present evidence that in heavily oxidized protein samples, such as those produced by hydroxyl radical surface mapping, a major oxidation product of methionine is homocysteic acid. The formation of homocysteic acid from methionine was previously unrecognized in other mass spectrometric analyses, and has important implications for the analysis of oxidized samples, as well as potential implications as to the functional consequences of methionine oxidation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Albumin is an important plasma antioxidant protein, contributing to protecting mechanisms of cellular and regulatory long‐lived proteins. The metal‐catalyzed oxidation (MCO) of proteins plays an important role during oxidative stress. In this study, we examine the oxidative modification of albumin using an MCO in vitro system. Mass spectrometry, combined with off‐line nano‐liquid chromatography, was used to identify modifications in amino acid residues. We have found 106 different residues oxidatively damaged, being the main oxidized residues lysines, cysteines, arginines, prolines, histidines and tyrosines. Besides protein hydroxyl derivatives and oxygen additions, we detected other modifications such as deamidations, carbamylations and specific amino acid oxidative modifications. The oxidative damage preferentially affects particular subdomains of the protein at different time‐points. Results suggest the oxidative damage occurs first in exposed regions near cysteine disulfide bridges with residues like methionine, tryptophan, lysine, arginine, tyrosine and proline appearing as oxidatively modified. The damage extended afterwards with further oxidation of cysteine residues involved in disulfide bridges and other residues like histidine, phenylalanine and aspartic acid. The time‐course evaluation also shows the number of oxidized residues does not increase linearly, suggesting that oxidative unfolding of albumin occurs through a step‐ladder mechanism. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In a reaction mixture containing hematoporphyrin derivative, deoxyribose, Fe3+-EDTA and either methionine or tryptophan, hydroxyl radicals were formed during illumination with visible light. When either hematoporphyrin derivative, Fe3+-EDTA or the amino acid was omitted from the reaction mixture, the generation of hydroxyl radicals ceased. These observations suggest an iron-catalyzed Haber-Weiss reaction, involving superoxide and hydrogen peroxide in the generation of hydroxyl radicals. It could be shown that with methionine H2O2 was indeed an essential intermediate in the reaction sequence. With tryptophan, however, H2O2, was not generated. Apparently a photooxidation product of tryptophan could replace H2O2 in the OH-generating reaction with Fe2+-EDTA. Although superoxide was generated in the reaction mixture, it was not an indispensable intermediate. Apparently a porphyrin radical, formed via photoexcitation of hematoporphyrin derivative, could replace superoxide in the Haber-Weiss reaction.  相似文献   

11.
The exposure of peptides and proteins to reactive hydroxyl radicals results in covalent modifications of amino acid side‐chains and protein backbone. In this study we have investigated the oxidation the isomeric peptides tyrosine–leucine (YL) and leucine–tyrosine (LY), by the hydroxyl radical formed under Fenton reaction (Fe2+/H2O2). Through mass spectrometry (MS), high‐performance liquid chromatography (HPLC‐MS) and electrospray tandem mass spectrometry (HPLC‐MSn) measurements, we have identified and characterized the oxidation products of these two dipeptides. This approach allowed observing and identifying a wide variety of oxidation products, including isomeric forms of the oxidized dipeptides. We detected oxidation products with 1, 2, 3 and 4 oxygen atoms for both peptides; however, oxidation products with 5 oxygen atoms were only present in LY. LY dipeptide oxidation leads to more isomers with 1 and 2 oxygen atoms than YL (3 vs 5 and 4 vs 5, respectively). Formation of the peroxy group occurred preferentially in the C‐terminal residue. We have also detected oxidation products with double bonds or keto groups, dimers (YL–YL and LY–LY) and other products as a result of cross‐linking. Both amino acids in the dipeptides were oxidized although the peptides showed different oxidation products. Also, amino acid residues have shown different oxidation products depending on the relative position on the dipeptide. Results suggest that amino acids in the C‐terminal position are more prone to oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Owing to their ability to be genetically expressed in live cells, fluorescent proteins have become indispensable markers in cellular and biochemical studies. These proteins can undergo a number of covalent chemical modifications that may affect their photophysical properties. Among other mechanisms, such covalent modifications may be induced by reactive oxygen species (ROS), as generated along a variety of biological pathways or through the action of ionizing radiations. In a previous report [1], we showed that the exposure of cyan fluorescent protein (ECFP) to amounts of ?OH that mimic the conditions of intracellular oxidative bursts (associated with intense ROS production) leads to observable changes in its photophysical properties in the absence of any direct oxidation of the ECFP chromophore. In the present work, we analyzed the associated structural modifications of the protein in depth. Following the quantified production of ?OH, we devised a complete analytical workflow based on chromatography and mass spectrometry that allowed us to fully characterize the oxidation events. While methionine, tyrosine, and phenylalanine were the only amino acids that were found to be oxidized, semi-quantitative assessment of their oxidation levels showed that the protein is preferentially oxidized at eight residue positions. To account for the preferred oxidation of a few, poorly accessible methionine residues, we propose a multi-step reaction pathway supported by data from pulsed radiolysis experiments. The described experimental workflow is widely generalizable to other fluorescent proteins, and opens the door to the identification of crucial covalent modifications that affect their photophysics.
Figure
Barrel structure of ECFP: residues that were found to be oxidized by .OH radicals are highlighted  相似文献   

13.
    
Proteins that perform other functions elsewhere appear to be recruited for structural purposes in the eye lens. The lens being a tissue with very little metabolic activity and little or no turnover, the lens proteins, crystallins, are long lived. In an effort to understand whether their recruitment might be related to their conformation and structural stability, we have examined these features of the avian lens protein δ-crystallin. The native molecule is a tetramer (molecular mass 200 kDa) that is highly α-helical in conformation, and with an unusually blue tryptophan fluorescence (315,325 nm), which is only partially quenched by conventional quenchers. We show that the fluorescence doublet arises due to Trp residues that are effectively buried inside the rigid hydrophobic core of the tetrameric aggregate. The protein is heat stable up to 91°C. Guanidinium chloride (GuHCl) effects the complete denaturation of δ-crystallin, whereas heat or urea treatment results in only partial unfolding or dissociation. The initial transition is the disruption of the quaternary structure by perturbing the intersubunit interactions, leading to exposure of hydrophobic contact surfaces (as monitored by extrinsic probe fluorescence). This initial transition is seen upon heating to 60°C as well as in 1 M GuHCl and 4 M urea. We show that in 2.2 M GuHCl the molecule is swollen but is still largely helical with the Trp residues being present in a somewhat more polar environment than in the native molecule. Beyond 4 M GuHCl there is a gradual unfolding of the molecule, which is complete in 6 M GuHCl. This structural robustness of δ-crystallin might be important in its recruitment as the core protein of the avian lens. Dedicated to Professor C N R Rao on his sixtieth birthday.  相似文献   

14.
New oxidation products and free radicals derived from tryptophan (Trp) oxidation under Fenton reaction conditions were identified using mass spectrometry. After the oxidation of tryptophan using hydrogen peroxide and iron (II) system (Fenton reaction), mono- and dihydoxy tryptophans and N-formylkynurenine were identified using electrospray mass spectrometry (ES-MS) and ES-MS/MS. Besides these products, new products resulting from the reaction of tryptophan and oxidized tryptophan and 3-methyl indole derivatives were also identified. The 3-methyl indole derivatives resulted, most probably, from the oxidation process and not from in-source processes. A dimer formed by cross-linking between two Trp radicals (Trp-Trp), similar to the previously described tyrosine dimer was observed, as well as the corresponding monohydroxy-dimer (Trp-Trp-OH). Tandem mass spectrometry was used to identify the structures of these new oxidation products. Free radicals derived from tryptophan oxidation under Fenton reaction were detected using as spin trap the DMPO. The free radical species originated during the oxidation reaction formed stable adducts with the spin trap, and these adducts were identified by ES-MS. New adducts of oxidized tryptophan radicals, namely monohydroxy-tryptophan and dihydroxy-Trp dimer radicals, with one and two DMPO spin trap molecules where identified. Tandem mass spectrometry was used to confirm the proposed structure of the observed adducts.  相似文献   

15.
Structural modification of a polypeptide hormone, glucagon, by a hydroxyl radical in vitro was investigated by reversed‐phase high‐performance liquid chromatography (RP‐HPLC), and the oxidized site of glucagon was detected by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). It was shown that 27methionine (Met) was oxidized to 27Met sulfoxide by hydroxyl radical, and the production rate of 27Met sulfoxide was faster than that by hydrogen peroxide. In addition, production of 27Met sulfoxide enantiomer was confirmed by RP‐HPLC analysis. cAMP production in a HepG2 cell induced by 27Met sulfoxide glucagon was reduced to approximately 75% as compared with that induced by the native form of glucagon. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract— Both native blue fluorescent α-crystallin from calf lenses and UV (300 nm)-irradiated blue-fluorescent α-crystallin, when further irradiated with 365 nm-UV light, produce photo-products capable of emitting a new fluorescence at 455 nm. Illumination of the photo-products with 420 nm visible light regenerates the original fluorescence at 420–425 nm. In addition, another fluorescence at 400 nm has also been found in UV (300 nm)-irradiated blue-fluorescent α-crystallin, when exposed to 365 nm-UV light.  相似文献   

17.
Among damages reported to occur on proteins, radical-based changes of methionine (Met) residues are one of the most important convalent post-translational modifications. The combined application of Raman and infrared (IR) spectroscopies for the characterisation of the radical-induced modifications of Met is described here. Gamma-irradiation was used to simulate the endogenous formation of reactive species such as hydrogen atoms (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2). These spectroscopic techniques coupled to mass experiments are suitable tools in detecting almost all the main radical-induced degradation products of Met that depend on the nature of the reactive species. In particular, Raman spectroscopy is useful in revealing the radical-induced modifications in the sulphur-containing moiety, whereas the IR spectra allow decarboxylation and deamination processes to be detected, as well as the formation of other degradation products. Thus, some band patterns useful for building a library of spectra–structure correlation for radical-based degradation of Met were identified. In particular, the bands due to the formation of methionine sulfoxide, the main oxidation product of Met, have been identified. All together, these results combine to produce a set of spectroscopic markers of the main processes occurring as a consequence of radical stress exposure, which can be used in a spectroscopic protocol for providing a first assessment of Met modifications in more complex systems such as peptides and proteins, and monitoring their impact on protein structure.  相似文献   

18.
A novel two-dimensional (2D) chromatographic method is developed to separate proteins from malignant breast cancer whole cell lysates. Protein mixtures are first separated according to their pIby chromatofocusing followed by an orthogonal non-porous reversed-phase separation. An important advantage of this 2D chromatographic method is that, unlike gel-based methods, it does not result in methionine oxidation. The lack of methionine oxidation during separation is demonstrated by the analysis of protein tryptic digests using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS. Our novel 2D chromatographic method used in combination with on-target light-induced methionine oxidation provides a means for studying methionine-containing peptides. Methionine residues in peptide sequences are partially oxidized with light exposure. Neither the location nor the modification of methionine in the peptide sequence affects the oxidation. As a result, multiple peaks are observed in MALDI-TOF-MS spectra after light exposure. Sequence information derived from light-induced methionine can be applied to enhance the database search results obtained through peptide mass fingerprinting.  相似文献   

19.
GPC radical species formed during oxidation of a glycerophosphocholine (16:0/18:1) under the Fenton reaction conditions were detected using a spin trap, 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). The stable spin-trapped radical adducts were identified by mass spectrometry (MS) using electrospray (ES) as ionization method and characterized by tandem mass spectrometry (MS/MS). Radical adducts of oxidized free sn-2 fatty acid and of oxidized intact GPC, containing one, two and three additional oxygen atoms, were assigned. DMPO adducts of oxidized intact GPC were observed as singly and doubly charged ions in ES-MS, while adducts of oxidized free fatty acids were observed as singly charged ions. Oxidized free sn-2 fatty acids and intact GPC-DMPO adducts correspond to carbon- and oxygen-centered radicals that were identified by MS/MS as alkyl, hydroxy-alkyl, alkoxyl, hydroxy-alkoxyl, peroxyl and hydroperoxide-alkoxyl spin adducts. The DMPO molecule was attached predominantly at C(9) of the oleic chain. The fragmentation pathway of spin adducts with two DMPO molecules strongly suggests the presence of species that were simultaneously carbon- and oxygen-centered radicals. Several fragments identified are consistent with the presence of isomeric structures contributing to the same ions.  相似文献   

20.
Abstract— The acridine and phenanthridine hydroperoxides 3 and 7 were synthesized as photochemical hydroxyl radical sources for oxidative DNA damage studies. The generation of hydroxyl radicals upon UVA irradiation (Λ. = 350 nm) was verified by trapping experiments with 5,5-di-methyl-1-pyrroline N -oxide and benzene. The enzymatic assays of the damage in cell-free DNA from bacteriophage PM2 caused by the acridine and phenanthridine hydroperoxides 3 and 7 under near-UVA irradiation revealed a wide range of DNA modifications. Particularly, extensive single-strand break formation and DNA base modifications sensitive to formamidopyrimidine DNA glycosylase (Fpg protein) were observed. In the photooxida-tion of calf thymus DNA, up to 0.69±0.03% 8-oxo-7,8-dihydroguanine was formed by the hydroperoxides 3 and 7 on irradiation, whose yield was reduced up to 40% in the presence of the hydroxyl radical scavengers mannitol and fert-butanol. The acridine and phenanthridine hydroperoxides 3 and 7 also induce DNA damage through the type I photooxidation process, for which photoinduced electron transfer from 2'-deoxyguanosine to the singlet states of 3 and 7 was estimated by the Rehm-Weller equation to possess a negative Gibb's free energy of cα -5 kcal/ mol. Control experiments with the sensitizers acridine 1 and the acridine alcohol 4 in calf thymus and PM2 DNA confirmed the photosensitizing propensity of the UVA-ab-sorbing chromophores. The present study emphasizes that for the development of selective and efficient photochemical hydroxyl radical sources, chromophores with low photosensitizing ability must be chosen to avoid type I and type II photooxidation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号