首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isolation, structural characterization, and electronic properties of a series of high-spin mononuclear five-coordinated Mn(II) complexes, [Mn(terpy)(X)(2)] (terpy = 2, 2':6',2' '-terpyridine; X = I(-) (1), Br(-) (2), Cl(-) (3), or SCN(-) (4)), are reported. The X-ray structures of the complexes reveal that the manganese ion lies in the center of a distorted trigonal bipyramid for complexes 1, 2, and 4, while complex 3 is better described as a distorted square pyramid. The electronic properties of 1-4 were investigated by high-field and high-frequency EPR spectroscopy (HF-EPR) performed between 5 and 30 K. The powder HF-EPR spectra have been recorded in high-field-limit conditions (95-285 GHz) (D < gbetaB). The spectra are thus simplified, allowing an easy interpretation of the experimental data and an accurate determination of the spin Hamiltonian parameters. The magnitude of D varies between 0.26 and 1.00 cm(-)(1) with the nature of the anionic ligand. Thanks to low-temperature EPR experiments, the sign of D was unambiguously determined. D is positive for the iodo and bromo complexes and negative for the chloro and thiocyano ones. A structural correlation is proposed. Each complex is characterized by a significant rhombicity with E/D values between 0.17 and 0.29, reflecting the distorted geometry observed around the manganese. Finally, we compared the spin Hamiltonian parameters of our five-coordinated complexes and those previously reported for other analogous series of dihalo four- and six-coordinated complexes. The effect of the coordination number and of the geometry of the Mn(II) complexes on the spin Hamiltonian parameters is discussed.  相似文献   

2.
The trinuclear Cu(II) complex [(talen)Cu(II)(3)] (1) using the new triplesalen ligand H(6)talen has been synthesized and structurally characterized. The three Cu(II) ions are bridged in a m-phenylene linkage by the phloroglucinol backbone of the ligand. This m-phenylene bridging mode results in ferromagnetic couplings with an S(t) = (3)/(2) spin ground state, which has been analyzed by means of EPR spectroscopy and DFT calculations. The EPR spectrum exhibits an unprecedented pattern of 10 hyperfine lines due to the coupling of three Cu(II) ions (I = (3)/(2)). Resonances around g = 4 in both perpendicular and parallel mode EPR spectra demonstrate a zero-field splitting of D approximately 74 x 10(-4) cm(-1) arising from anisotropic/antisymmetric exchange interactions. The DFT calculations show an alteration in the sign of the spin densities of the central benzene ring corroborating the spin-polarization mechanism as origin for the ferromagnetic coupling.  相似文献   

3.
Anionic boron-bridged bisoxazolines (borabox ligands) have been synthesized and characterized in their protonated forms. The ligands are tuneable over a wide range, allowing either alkyl or aryl substituents at the oxazoline rings and the central bridging boron atom. The structural parameters of this new ligand type have been investigated by X-ray analyses of palladium and copper complexes. Electronic properties have been studied by (13)C NMR spectroscopy and by DFT calculations on palladium allyl complexes and compared to those of analogous bisoxazoline (box) complexes. Borabox complexes are more electron-rich at the metal center than their neutral box congeners, and as a consequence of the longer bonds between the bridging atom and the oxazoline rings, their bite angles are larger. Palladium(II) complexes bearing an unsubstituted allyl ligand and homoleptic copper(II) complexes each possess an almost flat chelate ring. NMR analysis of a (1,3-diphenylallyl)(borabox)palladium complex showed a 92:8 mixture of (syn,syn) and (anti,syn) allyl isomers, in contrast with a previously reported box analogue that existed exclusively in the (syn,syn) form. Comparison of the corresponding crystal structures revealed that the distance between the bisoxazoline and the allyl ligand in the borabox complex is shorter. In the copper-catalyzed allylic oxidation of cyclohexene and cyclopentene with tert-butyl perbenzoate, borabox ligands gave results similar-and in some cases superior-to those obtained with analogous box ligands.  相似文献   

4.
5.
Seven copper(II)-complexes 1-7 with the ligand 2,2'-selenobis(4,6-di-tert-butylphenol) providing [O,Se,O]-donor atoms have been isolated and characterized. Three of them 1, 2 and 3 are mononuclear, two 4 and 7 dinuclear and 5, 6 are trinuclear. The crystal structures of the complexes were determined by X-ray diffraction and the electronic structures were established by various physical methods including EPR and variable temperature (2-290 K) susceptibility measurements. The magnetic behaviour of the compounds 4-6 exhibits antiferromagnetic exchange coupling resulting in well-isolated S(t)= 1/2 ground state for 5 and 6 and a diamagnetic spin state for 4. Complexes 5 and 6 belong to the class of asymmetric trinuclear copper(II) complexes modelling the trinuclear copper site in multicopper oxidases. Complex 1 is a catalyst in the presence of a strong base for the aerial oxidation of primary alcohols to the corresponding aldehydes. A dinuclear complex, seemed to be 4, prepared in situ has been found to be a catalyst for the aerial oxidation of primary amines containing alpha-C-H atoms. Primary kinetic isotope effects show that H-abstraction from the alpha-carbon atom of a coordinated substrate (alcoholato or amine) is the rate-determining step in both cases. Two functional models for the metalloenzymes galactose oxidase and amine oxidases are thus described.  相似文献   

6.
A complete series of copper(ii) halide complexes [CuX(tptm)](X = F (), Cl (), Br (), I (); tptm = tris(2-pyridylthio)methyl) with a novel Cu(II)-C(sp(3)) bond has been prepared by the reactions of [Cu(tptm)(CH(3)CN)]PF(6)(.PF(6)) with corresponding halide sources of KF or n-Bu(4)NX (X = Cl, Br, I), and the trigonal bipyramidal structures have been confirmed by X-ray crystallography and/or EPR spectroscopy. The iodide complex easily liberates the iodide anion in acetonitrile forming the acetonitrile complex as a result. The EPR spectra of the complexes showed several superhyperfine structures that strongly indicated the presence of spin density on the halide ligands through the Cu-X bond. The results of DFT calculations essentially matched with the X-ray crystallographic and the EPR spectroscopic results. Cyclic voltammetry revealed a quasi-reversible reduction wave for Cu(II)/Cu(I) indicating a trigonal pyramidal coordination for Cu(I) states. A coincidence of the redox potential for all [CuX(tptm)](0/+) processes indicates that the main oxidation site in each complex is the tptm ligand.  相似文献   

7.
The spectral studies and structure of a ternary complex of copper(II) with 2-hydroxyacetophenone 3-hexamethyliminylthiosemicarbazonate (L(2-)) and 1,10-phenanthroline (phen) are reported. The thiosemicarbazone binds to the metal as a dianionic ONS-donor (L(2-)) ligand, and forms a complex of the stoichiometry [CuLphen]. The copper(II) complex was characterized by IR and UV/Vis spectroscopies, as well as by solid state room-temperature magnetic susceptibility. Spin Hamiltonian and bonding parameters of the compound are calculated from the EPR spectra. Computer simulation of EPR spectrum in DMF at 77 K aided the calculation of magnetic and bonding parameters of the compound. The structure of the compound is solved by single crystal X-ray diffraction. The geometry around copper is distorted square pyramidal.  相似文献   

8.
Metal complexes of o-vanillidene-2-aminobenzothiazole have been prepared and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as magnetic susceptibility measurements and thermo gravimetric analysis (TG/DTA). The low molar conductance values reveal the non-electrolytic nature of these complexes. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand). Magnetic susceptibility data coupled with electronic spectra suggest that two ligands coordinate to each metal atom by phenolic oxygen and imino nitrogen to form high spin octahedral complex with Co(II), Mn(II) and Ni(II). The fifth and sixth position of metal ion is satisfied with water molecules. The thermal behaviour (TG/DTA) of the synthesised complexes shows that the complexes loss water molecules in the first step followed by decomposition of the ligand. Spin Hamiltonian parameters predict a distorted tetrahedral geometry for the copper complex. XRD and SEM analysis provide the crystalline nature and the morphology of the metal complexes. The in vitro biological activity of the metal chelates is tested against the Gram positive bacteria (Bacillus amyloliquifacians) and gram negative bacteria (Pseudomonas species), fungus (Aspergillus niger) and yeast (Sacchromyces cereviaceae). Most of the metal chelates exhibited higher biological activities.  相似文献   

9.
The previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.285(8) cm(-1), g = [2.170(4), 2.161(3), 2.133(3)]. Similar, but not identical parameters were obtained for its borodeuteride analogue. The previously unreported complex, Tp*Zn(κ(2)-BH(4)), was prepared, and IR and NMR spectroscopy allowed its comparison with analogous closed shell borohydride complexes. Ligand-field theory was used to model the electronic transitions in the Ni(II) complex successfully, although it was less successful at reproducing the zero-field splitting (zfs) parameters. Advanced computational methods, both density functional theory (DFT) and ab initio wave function based approaches, were applied to these Tp*MBH(4) complexes to better understand the interaction between these metals and borohydride ion. DFT successfully reproduced bonding geometries and vibrational behavior of the complexes, although it was less successful for the spin Hamiltonian parameters of the open shell Ni(II) complex. These were instead best described using ab initio methods. The origin of the zfs in Tp*Ni(κ(3)-BH(4)) is described and shows that the relatively small magnitude of D results from several spin-orbit coupling (SOC) interactions of large magnitude, but with opposite sign. Spin-spin coupling (SSC) is also shown to be significant, a point that is not always appreciated in transition metal complexes. Overall, a picture of bonding and electronic structure in open and closed shell late transition metal borohydrides is provided, which has implications for the use of these complexes in catalysis and hydrogen storage.  相似文献   

10.
Synthesis and characterization of three new trinuclear metal complexes of type Cu3, Cu2Zn and Cu2Ni have been achieved by assembling simple mononuclear complexes, namely 2,2'-bipyridyl 3,4-dihydroxo benzaldehyde copper(II) complex and diethylenetriamine complexes of copper(II), nickel(II) and zinc(II) ions, through the reaction of coordinated ligands. The FAB mass spectra for the complexes show fragmentation pattern in accordance with the molecular formula. The frozen electron paramagnetic resonance (EPR) spectrum of tricopper complex shows two sets of parallel lines with approximately 2:1 ratio. The simulation has been carried out by considering dipolar interaction between the two types of copper ions present in the complex. The trimetallic complexes, Cu3, Cu2Ni and Cu2Zn show strong intercalation type of interaction with Calf thymus DNA in 0.02 mol L(-1) of phosphate buffer containing 60 mmol sodium chloride at pH 7.0 at room temperature. The binding constant is found to be in the order Cu3相似文献   

11.
The syn and anti isomers of the bi- and trinuclear Re(CO)(3)Cl complexes of 2,3,8,9,14,15-hexamethyl-5,6,11,12,17,18-hexaazatrinapthalene (HATN-Me(6)) are reported. The isomers are characterized by (1)H NMR spectroscopy and X-ray crystallography. The formation of the binuclear complex from the reaction of HATN-Me(6) with 2 equiv of Re(CO)(5)Cl in chloroform results in a 1:1 ratio of the syn and anti isomers. However, synthesis of the trinuclear complex from the reaction of HATN-Me(6) with 3 equiv of Re(CO)(5)Cl in chloroform produces only the anti isomer. syn-{(Re(CO)(3)Cl)(3)(μ-HATN-Me(6))} can be synthesized by reacting 1 equiv of Re(CO)(5)Cl with syn-{(Re(CO)(3)Cl)(2)(μ-HATN-Me(6))} in refluxing toluene. The product is isolated by subsequent chromatography. The X-ray crystal structures of syn-{(Re(CO)(3)Cl)(2)(μ-HATN-Me(6))} and anti-{(Re(CO)(3)Cl)(3)(μ-HATN-Me(6))} are presented both showing severe distortions of the HATN ligand unit and intermolecular π stacking. The complexes show intense absorptions in the visible region, comprising strong π → π* and metal-to-ligand charge-transfer (MLCT) transitions, which are modeled using time-dependent density functional theory (TD-DFT). The energy of the MLCT absorption decreases from mono- to bi- to trinuclear complexes. The first reduction potentials of the complexes become more positive upon binding of subsequent Re(CO)(3)Cl fragments, consistent with changes in the energy of the MLCT bands and lowering of the energy of relevant lowest unoccupied molecular orbitals, and this is supported by TD-DFT. The nature of the excited states of all of the complexes is also studied using both resonance Raman and picosecond time-resolved IR spectroscopy, where it is shown that MLCT excitation results in the oxidation of one rhenium center. The patterns of the shifts in the carbonyl bands upon excitation reveal that the MLCT state is localized on one rhenium center on the IR time scale.  相似文献   

12.
13.
Complexation of copper(II) by calix[6]arene-based ligands bearing either two or three N-benzylimidazole coordinating arms under basic conditions has been studied. Whereas the tris(imidazole) derivative stabilizes dicationic 5-coordinate aqua complexes in a mononuclear state with an intracavity bound guest, in the presence of hydroxide ions, the latter undergo dimerization. An X-ray structure revealed decoordination of one imidazole arm and formation of a bis(hydroxo) bridged Cu(II) core with a square-planar geometry for both metal centers sandwiched by two empty calixarene cavities. Upon methanolysis, the dinuclear complex underwent an unexpected rearrangement leading to the clean formation of a trinuclear complex. X-ray diffraction analyses of this novel species revealed a trinuclear core constructed around a central Cu(II) ion that is doubly bridged through either methoxide or hydroxide anions to two Cu(II) ions hold by two calixarene units. The same complex could be directly synthesized by reacting the ligand with copper(II) perchlorate in a 2:3 ratio in the presence of base. In solution, the tetrahydroxo Cu(3) complex was characterized by UV-vis and (1)H NMR spectroscopies and displayed an electron paramagnetic resonance (EPR) signal only below 100 K that accounts for a S = 1/2 fundamental state. Formation of the same di- and trinuclear species was observed with a calix[6]arene-based bis(imidazole) ligand, which demonstrates the generality of the reaction schemes. All these results emphasize the versatility of the calix[6]arene scaffold for the stabilization of metal complexes with various nuclearities.  相似文献   

14.
The complex Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N',N'-tetramethylethylenediamine) is a model for the active site of hydrolase enzymes containing acetate-bridged dimanganese cores. The two high-spin Mn(II) ions are antiferromagnetically coupled, as determined by previous magnetic susceptibility studies (Yu, S.-B; Lippard, S. J.; Shweky, I; Bino, A. Inorg. Chem. 1992, 31, 3502-3504) to yield a spin "ladder" with total spin S = 0, 1, 2, ..., 5 in increasing energy. In this study, the complex was characterized by Q-band and X-band EPR spectroscopy in frozen solution. Analysis of the temperature dependence of these EPR spectra indicates that the primary spectral contribution is from the S = 2 manifold. The EPR spectra were simulated using a full spin Hamiltonian for this manifold of a coupled spin system, which provided the fit parameters J = -2.9 cm-1, g = 2.00, and D2 = -0.060 +/- 0.003 cm-1. An additional multiline EPR signal is observed which is proposed to arise from the total spin S = 5/2 ground state of a Mn(II) trimer of the type Mn3(OAc)6(tmeda)2.  相似文献   

15.
Two different copper complexes with cytosine molecules are formed in the process of crystal growth from the aqueous solution with traces of copper. One of them is diamagnetic, turning into paramagnetic upon ionizing irradiation (complex I). The other, the subject of the present study, is paramagnetic (complex II) as prepared. For complex II, EPR spectra demonstrate that the copper ion is coordinated with one nitrogen atom and three oxygen atoms. On the basis of the detailed EPR spectroscopic analysis and quantum-chemical calculations (in the DFT approach) the model of the complex has been proposed. Both experimental data and the theoretical results support the model with the copper atom, located between the two cytosine ribbons, ligated to a nitrogen and an oxygen atom from two opposing cytosine molecules and two oxygen atoms from water molecules. For complex II the Raman spectra demonstrated concerted restructuring of the hydrogen bonding in the cytosine crystal matrix upon insertion of copper ions.  相似文献   

16.
Cu(I)-NO adsorption complexes were formed over Cu-ZSM-5 zeolites prepared by (i) solid-state ion exchange of NH(4)-ZSM-5 with CuCl and (ii) liquid-state ion exchange of ZSM-5 with Cu(CH(3)COO)(2). Electron spin resonance spectroscopy revealed the formation of two different Cu(I)-NO species A and B in both systems, whose spin Hamiltonian parameters are comparable with those already reported for the Cu(I)-NO species formed over 66% Cu(II) liquid-state ion-exchanged Cu-ZSM-5 materials. The population of the species A and B differs for the two systems studied. Formation of species B is more favored in the solid-state ion-exchanged Cu-ZSM-5 when compared to the liquid-state exchanged zeolite. The X-, Q- and W-band electron spin resonance spectra recorded at 6 and 77 K reveal the presence of a rigid geometry of the adsorption complexes at 6 K and a dynamic complex structure at higher temperatures such as 77 K. This is indicated by the change in the spin Hamiltonian parameters of the formed Cu(I)-NO species in both the liquid- and solid-state ion-exchanged Cu-ZSM-5 zeolites from 6 to 77 K. Possible models for the motional effects found at elevated temperatures are discussed. The temperature dependence of the electron spin phase memory time measured by two-pulse electron spin-echo experiments indicates, likewise, the onset of a motional process of the adsorbed NO molecules at temperatures above 10 K. The studies support previous assignments where the NO complexes are formed at two different Cu(I) cationic sites in the ZSM-5 framework and highlight that multifrequency electron spin resonance experiments at low temperatures are essential for reliable determination of the spin Hamiltonian parameters of the formed adsorption complexes for further comparison with Cu(I)-NO complex structures predicted by quantum chemical calculations.  相似文献   

17.
Single crystal EPR spectra of a natural mineral, apophyllite, containing VO(II) ion as an impurity have been investigated. The EPR spectra of the mineral, as obtained, was complex in nature, but was simplified by annealing the crystals at 490 K. The EPR parameters of the VO(II) species in the annealed crystal,g = 1.924 (2);g = 1.983 (2);A = 18.35 (5); andA = 7.24 (5)mT, are very close to a typical VO(II) impurity. Theoretically calculated line positions, using second-order hyperfine terms in the spin Hamiltonian with an axially symmetricg andA tensor values, agreed very well with the experimental ones. The EPR analysis of the annealed crystal has further revealed that the most preferred location of the VO(II) impurity is a substitutional Ca(II) site. The calculated bonding parameters and admixture coefficients indicate a fair amount of covalent bonding in the complex.  相似文献   

18.
Theoretical calculations using density functional methods have been performed on two dinuclear {Ni(II)-Gd(III)} and two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes having two and three μ-OR (R = alkyl or aromatic groups) bridging groups. The different magnetic behaviour, having moderately strong ferromagnetic coupling for complexes having two μ-OR groups and weak ferromagnetic coupling for complexes having three μ-OR groups, observed experimentally is very well reproduced by the calculations. Additionally, computation of overlap integrals MO and NBO analysis reveals a clear increase in antiferromagnetic contribution to the net exchange for three μ-OR bridged {Ni-Gd} dimers and also provides several important clues regarding the mechanism of magnetic coupling. Besides, MO and NBO analysis discloses the role of the empty 5d orbitals of the Gd(III) ion on the mechanism of magnetic coupling. Magneto-structural correlations for Ni-O-Gd bond angles, Ni-O and Gd-O bond distances, and the Ni-O-Gd-O dihedral angle have been developed and compared with the published experimental {Ni-Gd} structures and their J values indicate that the Ni-O-Gd bond angles play a prominent role in these types of complexes. The computation has then been extended to two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes and here both the {Ni-Gd} and the {Ni-Ni} interactions have been computed. Our calculations reveal that, for both structures studied, the two {NiGd} interactions are ferromagnetic and are similar in strength. The {Ni-Ni} interaction is antiferromagnetic in nature and our study reveals that its inclusion in fitting the magnetic data is necessary to obtain a reliable set of spin Hamiltonian parameters. Extensive magneto-structural correlations have been developed for the trinuclear complexes and the observed J trend for the trinuclear complex is similar to that of the dinuclear {Ni-Gd} complex. In addition to the structural parameters discussed above, for trinuclear complexes the twist angle between the two Ni-O-Gd planes is also an important parameter which influences the J values.  相似文献   

19.
The donor-acceptor compounds N,N'-dicyanobenzo[b]naphtho[2,3-e][1,4]dithiin-6,11-quinonediimine (9a) and N,N'-dicyanobenzo[b]naphtho[2,3-e][1,4]oxathiin-6,11-quinonediimine (10a) and their methyl-substituted derivatives (9b and 10b-d, respectively) have been prepared, and their structural and electronic properties have been characterized by both experimental techniques and quantum-chemical calculations. The (1)H-NMR spectra evidence the existence of a syn/anti isomerism in solution. Both experimental and theoretical data suggest that the preferred configuration of the N-CN groups corresponds to a syn isomer for 9 and to an anti isomer for 10. The X-ray analysis performed for 9b reveals that molecules are not planar and pack in vertical stacks showing an overlap between donor and acceptor moieties of adjacent molecules. In agreement with X-ray data, theoretical calculations predict that both for 9 and 10 the acceptor DCNQI moiety is folded and adopts a butterfly-type structure and the donor moiety is bent along the line passing through the heteroatoms. The energy difference between planar and butterfly structures is calculated to be < 3 kcal/mol at the ab initio 6-31G level. The UV-vis spectra present a broad absorption in the visible which corresponds to a photoinduced intramolecular electron transfer from the high-energy HOMO furnished by the donor moiety to the low-energy LUMO located on the DCNQI fragment. Cyclic voltammetry displays one oxidation peak to the cation and two one-electron reduction waves to the anion and dianion. Theoretical calculations show the planarization of the acceptor/donor moiety induced by reduction/oxidation. The formation of stable radical anions is corroborated by the intense EPR signals recorded for reduced 9. The assignment of the hyperfine coupling constants of the EPR spectra is consistent with the existence of a preferred syn configuration.  相似文献   

20.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号