首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The solubilities of ketoconazole in binary and ternary mixtures of water, ethanol and polyethylene glycols 200, 400 or 600 (185 data points) were determined at 298.2 K. Williams–Amidon and Jouyban–Acree cosolvency models were used to model the data, with overall mean relative deviations (OMRDs) for the solubility data in binary and ternary solvents of 17.5 and 23.5%, respectively. For predicting the solubility data of ketoconazole the trained versions of the models were used and the OMRD values were 47.7 and 33.0%, respectively.  相似文献   

2.
The solubilities of naproxen in the binary and ternary mixtures of polyethylene glycols 200, 400 or 600 with ethanol and water (185 data points) at 298.2 K are determined and mathematically represented by cosolvency models. The obtained overall mean relative deviations (OMRDs) for fitting the solubility data of naproxen in binary and ternary mixtures using Williams–Amidon and Jouyban–Acree model are 15.7% and 16.5%, respectively, and the OMRD values for predicting the solubility data of naproxen by the trained versions of Williams–Amison and Jouyban–Acree models are 71.1% and 64.4%, respectively.  相似文献   

3.
A relatively simple expression is developed for predicting the solubility of an inert crystalline solute in binary alcohol + alcohol solvent mixtures based upon the Kretschmer-Wiebe association model. The predictive accuracy of the newlyderived expression is compared to equation(s) derived previously from Mobile Order theory using experimental anthracene solubilities in seven binary alcohol + 1-pentanol solvent mixtures at 25°C, which were measured as part of the present investigation. Computations show that both models accurately describe the solubility behavior of anthracene in the binary solvent systems studied. Average absolute deviations between observed and predicted values were 0.9% and 1.4% for the Kretschmer-Wiebe and Mobile Order predictive equations, respectively.  相似文献   

4.
Numerical methods to predict the solubility of anthracene in mixed solvents have been proposed. A minimum number of 3 solubility data points in sub-binary solvents has been employed to calculate the solvent-solute interaction terms of a well established colsolvency model, i.e. the combined nearly ideal binary solvent/Redlich-Kister model. The calculated interaction terms were used to predict the solubility in binary and ternary solvent systems. The predicted solubilities have been compared with experimental solubility data and the absolute percentage mean deviation (APMD) has been computed as a criterion of prediction capability. The overall APMD for 25 anthracene data sets in binary solvents is 0.40%. In order to provide a predictive method, which is based fully on theoretical calculations, the quantitative relationships between sub-binary interaction terms and physicochemical properties of the solvents have been presented. The overall APMD value for 41 binary data sets is 9.19%. The estimated binary interaction terms using a minimum number of data points and the quantitative relationships have then been used to predict anthracene solubility data in 30 ternary solvent systems. The produced APMD values are 3.72 and 15.79%, respectively. To provide an accurate correlation for solubility in ternary solvent systems, an extension to the combined nearly ideal multicomponenet solvent/Redlich-Kister (CNIMS/R-K) model was proposed and the corresponding overall AMPD is 0.38%.  相似文献   

5.
ABSTRACT

A brief review on various solubilisation techniques of coxibs is provided and the solubility of celecoxib (CXB) in binary solvent mixtures of {carbitol (1) + water (2)} is reported at temperatures ranging from 298.2 to 313.2 K. Three cosolvency models, i.e. Yalkowsky model, Jouyban–Acree model and the Jouyban–Acree–van’t Hoff model, have been used for correlating the reported data, and the mean relative deviations are employed to evaluate the accuracy of the fitness. Solubilities are also predicted by the generally trained version of the Jouyban–Acree model and its combined model with Abraham solute parameters previously proposed for {carbitol (1) + water (2)} binary mixtures. Furthermore, the apparent thermodynamic properties of dissolution process of CXB in all -investigated solvents were calculated according to van’t Hoff and Gibbs equations.  相似文献   

6.
The solubility of pyrene was experimentally determined in simple and complex solvent systems (single, binary, ternary, quaternary and pentinary solvent systems) composed of benzene, ethylbenzene, hexane, hexanol and methylcyclohexane over a temperature range from 293 to 318 K. In addition, six models were used in this study to represent pyrene solubility in the different solvent systems. The interaction parameters for modified Wilson, NIBS/Redlich-Kister, UNIQUAC and NRTL models were estimated using the solubility data generated for pyrene in single, binary and ternary solvent systems. By re-adjusting the interaction parameters reported for Dortmund UNIFAC and ASOG models, a better representation of the solubility of pyrene was obtained compared to using reported values. Furthermore, a correction term is introduced for the ASOG model in this study to better improve pyrene solubility prediction in simple and mixed solvent systems. These estimated or re-adjusted interaction parameters for the different models, along with the reported parameters for Dortmund UNIFAC and ASOG models, were tested on complex solvent systems (quaternary and pentinary solvent mixtures), in order to check their validity and accuracy for such predictions.  相似文献   

7.
ABSTRACT

The solubility of minoxidil in the aqueous binary mixtures of ethanol at different temperature are investigated and the obtained solubility data are fitted by using some cosolvency models including van’t Hoff equation, Yalkowsky model, Jouyban–Acree model and Jouyban–Acree–van’t Hoff model. The mean relative deviations (MRD%) are used to illustrate the models performance. Moreover, the apparent entropy, enthalpy, and Gibbs free energy of minoxidil dissolution process in the investigated solvent mixtures are computed using van’t Hoff and Gibbs equations. Finally, by means of the inverse Kirkwood–Buff integrals preferential solvation of minoxidil by water is observed in water-rich and ethanol-rich mixtures.  相似文献   

8.
The solubilities of budesonide (BDS) in binary aqueous mixtures of N-methyl-2-pyrrolidone at temperatures ranging from 293.2 to 313.2 K were determined and mathematically correlated by three cosolvency models, i.e. Jouyban–Acree model, Jouyban–Acree–van’t Hoff model and modified Wilson model. The solubilities were measured using the shake-flask method and the models wereused to fit the solubility data of BDS in the solvent mixtures. The obtained mean relative deviations (MRDs %) for cosolvency models trained using whole data points varied between 5.0% and 31.0%. Solubilities were also predicted by the generally trained version of the Jouyban–Acree model with the MRD of 37.0%. Furthermore, the apparent thermodynamic properties of dissolution process of BDS in all the mixed solvents were calculated according to van’t Hoff and Gibbs equations. Dissolution of BDS in these mixed solvents is an endothermic process.  相似文献   

9.
《Fluid Phase Equilibria》2006,242(1):93-102
A thermodynamic consistency test applicable to high pressure binary gas–solid mixtures is extended to ternary mixtures containing a compressed gas and two solid solutes. A high pressure mixture containing carbon dioxide as solvent and two chemically similar solutes (2,3 dimethylnaphthalene and 2,6 dimethylnaphthalene) and a high pressure mixture containing carbon dioxide as solvent and two chemically different solutes (capsaicin and β-carotene), are considered in the study. Several sets of isothermal solubility data for binary and ternary mixtures are considered in the study. The Peng–Robinson equation of state with the mixing rules of Wong and Sandler have been employed for modeling the solubility of the solid in the case of binary mixtures, while the classical van der Waals mixing rules were used for modeling the ternary mixtures containing two solid solutes. Then the proposed thermodynamic consistency test has been applied. The results show that the thermodynamic test for ternary mixtures can be applied with confidence determining consistency or inconsistency of the experimental data used.  相似文献   

10.
The Jouyban-Acree model has been used to predict the solubility of paracetamol in water-ethanol-propylene glycol binary and ternary mixtures based on model constants computed using a minimum number of solubility data of the solute in water-ethanol, water-propylene glycol and ethanol-propylene glycol binary mixtures. Three data points from each binary solvent system and solubilities in neat solvents were used to calculate the binary interaction parameters of the model. Then the solubility at other binary solvent compositions as well as in a number of ternary solvents were predicted, and the mean percentage deviation (+/-S.D.) of predicted values from experimental solubilities was 7.4(+/-6.1)%.  相似文献   

11.
《Thermochimica Acta》1990,158(1):11-21
The limitations and applications of the various nearly ideal binary solvent (NIBS) and microscopic partition (MP) models for predicting the thermochemical properties of solutes dissolved in binary solvent mixtures are re-examined using published solute solubility and infinite dilution activity coefficient data for 48 systems. Expressions derived from the basic NIBS and extended NIBS models provide very reasonable predictions for anthracene and carbazole solubilities in systems containing both non-specific and specific interactions. For many of the systems considered, deviations between experimental values and NIBS predictions are of the order of 6% or less. In comparison, the two expressions derived from the MP model grossly overpredict the observed solubilities, with the average absolute deviations for several of the carbazole systems being 30% or more.  相似文献   

12.
Quantitative structure property relationships were proposed to calculate the binary interaction terms of the Jouyban-Acree model using coefficients of Abraham solvational models. The applicability of the proposed methods for reproducing solubility data of anthracene in binary solvents has been evaluated using 56 solubility data sets collected from the literature. The mean percentage deviation (MPD) of experimental and calculated solubilities, using predicted mole fraction solubility of anthracene in solvents 1 and 2, has been computed as a measure of accuracy and the MPD of the proposed methods were 5.5 and 4.2%. The accuracy of the method was compared with that of a previously reported method where the MPD was 14.4% and the mean differences between proposed and previous methods was statistically significant. To provide a predictive model, solubility of anthracene was computed using Abraham solvational models and employed to predict the solubility in binary solvents using derived model constants of Jouyban-Acree model and the obtained MPDs were 37.9 and 22.2%, respectively.  相似文献   

13.
Organic solvents are amongst the most powerful solubilization agents for a large number of water-insoluble drugs. A number of equations has been reported for mathematical representation of solute solubility in mixed solvents. The question is then posed--is there a mathematical difference between these models? To address this point, it has been demonstrated that all cosolvency models could be made equivalent by using algebraic manipulations. In order to familiarize the readers with the available cosolvency models, they are briefly reviewed. The models can be divided into two mathematical categories, i.e. linear and non-linear models. The linear models include: the log-linear, extended Hildebrand solubility approach, excess free energy equations, combined nearly ideal binary solvent/Redlich-Kister equation and Margule equations which can be converted to a general single model which expresses the logarithm of mole fraction solubility of a solute as a power series of volume fraction of the cosolvent. The non-linear models include the mixture response surface methods, two step solvation model and modified Wilson model which can be converted to a non-linear general form. Also, it has been shown that both the general single model and a non-linear general model are mathematically identical. To show the applicability of the models on real experimental data, 35 data sets have been collected from the literature. Both linear and nonlinear models produced comparable accuracies when an equal number of constant terms was employed in numerical analyses.  相似文献   

14.
A numerical method is proposed for predicting solubility of drugs in water-PEG 400 mixtures based on the Jouyban-Acree cosolvency model. The accuracy of the proposed method is evaluated by computing mean percentage deviation (MPD) and compared with that of log-linear model of Yalkowsky. The overall MPDs of the Jouyban-Acree model and the most accurate version of Yalkowsky's model are 39.8 (+/-46.7) % and 175.8 (+/-266.4) %, respectively, and the mean difference is statistically significant (p < 0.0005). The proposed method produces acceptable residual distribution and the probability of solubility prediction with residual log of solubility <0.5 unit is 0.86. The applicability of the proposed method could be extended for predicting the solubility of drugs in water-PEG 400 mixtures at various temperatures. The impact of various log P values computed using different software is also studied and the results of ANOVA revealed that there are no significant differences between the accuracy of the predicted solubilities employing various log P values.  相似文献   

15.
Experimental solubilities of diazepam in binary and ternary solvents of polyethylene glycols 200 and 400 with N-methyl pyrrolidone and water at T = 298.2 K are reported. The Jouyban–Acree model was used to fit solubility data of diazepam in the binary and ternary solvent mixtures (106 data points) in which the overall mean relative deviations (OMRD %) is 13.1 % and the prediction OMRD % is 31.7 %. The combined version of the Jouyban–Acree model with Hansen solubility parameters was used for fitting and predicting the solubility data and the OMRDs % are 10.0 and 20.8 %, respectively. Also, the previously proposed trained versions of the Jouyban–Acree model were used for predicting the reported data in this work and all results are listed in the tables. The density of the solute-free solvent mixtures were measured and employed to calculate the constants of the Jouyban–Acree model and then the densities of the saturated solutions were predicted.  相似文献   

16.
A cosolvency model to predict the solubility of drugs at several temperatures was derived from the excess free energy model of Williams and Amidon. The solubility of oxolinic acid, an antibacterial drug, was measured in aqueous (water+ethanol) and non-aqueous (ethanol+ethyl acetate) mixtures at several temperatures (20, 30, 35, 40 degrees C). Oxolinic acid displays a solubility maximum in each solvent mixture at solubility parameter values of 32 and 22 MPa(1/2). The temperature and heat of fusion were determined from differential scanning calorimetry. The solvent mixtures do not produce any solid phase change during the solubility experiments. The experimental results and those from the literature were employed to examine the accuracy and prediction capability of the proposed model. An equation was obtained to represent the drug solubility changes with cosolvent concentration and temperature. The model was also tested using a small number of experimental solubilities at 20 and 40 degrees C showing reasonably accurate predictions. This is important in pharmaceutics because it save experiments that are often expensive and time consuming.  相似文献   

17.
The solubility of paracetamol in water-ethanol-propylene glycol binary and ternary mixtures at 25 and 30 degrees C was determined using flask shake method. The generated data extended the solubility database for further computational investigations and also was used to assess the prediction capability of the Jouyban-Acree model. A new version of the model was proposed for modeling the solubility data in water-cosolvent mixtures with the cosolvent concentration of <50% which is required in pharmaceutical formulations. The accuracy of the predicted solubilities was evaluated by the mean percentage deviation (MPD) between the predicted and experimental solubilities. The overall MPD of the Jouyban-Acree model and the log-linear model of Yalkowsky for the entire composition range of the cosolvents were 11.0+/-8.7 and 55.4+/-17.8%, respectively; the corresponding values for the predicted solubilities in mixtures having a cosolvent concentration of <50% were 12.0+/-9.1 and 22.0+/-11.0%.  相似文献   

18.
Experimental solubilities are reported for anthracene dissolved in eight binary mixtures containing 2-ethoxyethanol with 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 3-methyl-1-butanol and 1-octanol, and also in binary 1-pentanol+2-methoxyethanol and 2-methyl-1-propanol+2-propoxyethanol solvent systems at 25°C. Results of these measurements, combined with previously reported anthracene solubility data in 22 different alcohol +2-alkoxyethanol (2-methoxyethanol, 2-propoxyethanol and 2-butoxyethanol) solvent mixtures, are used to test the limitations and applications of expressions derived from Mobile Order theory. The first predictive expression assumes only formation of homogeneous self-associated hydrogen-bonded species, whereas the second equation includes additional terms to account for heterogeneous complex formation between the dissolved alcohol and 2-alkoxyethanol solvent molecules. Both equations predict the observed anthracene solubilities to within an average absolute deviation of about 3%.  相似文献   

19.
The solubility of acetaminophen and ibuprofen in binary and ternary mixtures of N-methyl pyrrolidone, polyethylene glycol 600 and water at 25 °C were determined and the solubilities are mathematically represented by the Jouyban–Acree model. The density of the solute-free solvent mixtures was measured and employed to train the Jouyban–Acree model and then the densities of the saturated solutions were predicted. The overall mean relative deviations (OMRDs) for fitting the solubility data of acetaminophen and ibuprofen in binary mixtures are 3.2% and 6.0%, respectively. The OMRDs for fitting the solubilities in ternary solvent mixtures for acetaminophen and ibuprofen are 15.0% and 28.6%, respectively, and the OMRD values for predicting all solubilities of acetaminophen and ibuprofen by a trained version of the Jouyban–Acree model are 9.4% and 17.8%, respectively. The prediction OMRD for the density of saturated solutions is 1.9%.  相似文献   

20.
This study is aimed at evaluating the applicability of the Jouyban–Acree model for predicting the solubility of polycyclic aromatic hydrocarbons (PAHs) in binary and ternary solvent mixtures at different temperatures by employing a large solubility data set. The solubility is predicted in solvent mixtures at different temperatures within an acceptable error range based on the experimental solubility data of PAHs in mono-solvents. The results reveal that the Jouyban–Acree model could be recommended for practical applications in chemical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号