首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1)H NMR of two H(2)@C(60) nitroxide derivatives has been characterized indirectly by reducing to their corresponding hydroxylamines. Nuclear spin relaxation of the endohedral H(2) and external protons of the H(2)@C(60) nitroxide and its corresponding hydroxylamine were measured and analyzed. The observed spectra are consistent with negligible scalar coupling between the unpaired electron and the endo-H(2). An unexpectedly large bimolecular relaxivity induced in the hydroxylamine by the corresponding nitroxide can be explained by rapid hydrogen atom transfer between the two species.  相似文献   

2.
The local dynamics of three poly(propylene imine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups were studied in D2O by the measurement of the 1H NMR relaxation times, which were treated with the Lipari–Szabo model‐free approach. The results showed that the overall mobility increased with temperature and decreased with increasing dendrimer size. An Arrhenius trend was observed for both overall and local motions. The activation energy of overall tumbling increased from 11.3 to 17.5 kJ/mol with the dendrimer size. The local mobility decreased from the outer part to the inner part of the dendrimer and with the dendrimer size. The spatial restriction of local motions decreased with increasing temperature up to 55 °C and remained constant above 55 °C. Local motions were more restricted when the dendrimer size increased. The results showed that the hydrophilic end groups of the dendrimers were located preferentially at the periphery of the molecules and were extended in the aqueous environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2969–2975, 2003  相似文献   

3.
(1)H relaxation dispersion of decalin and glycerol solutions of nitroxide radicals, 4-oxo-TEMPO-d(16)-(15)N and 4-oxo-TEMPO-d(16)-(14)N was measured in the frequency range of 10 kHz-20 MHz (for (1)H) using STELAR Field Cycling spectrometer. The purpose of the studies is to reveal how the spin dynamics of the free electron of the nitroxide radical affects the proton spin relaxation of the solvent molecules, depending on dynamical properties of the solvent. Combining the results for both solvents, the range of translational diffusion coefficients, 10(-9)-10(-11) m(2)∕s, was covered (these values refer to the relative diffusion of the solvent and solute molecules). The data were analyzed in terms of relaxation formulas including the isotropic part of the electron spin - nitrogen spin hyperfine coupling (for the case of (14)N and (15)N) and therefore valid for an arbitrary magnetic field. The influence of the hyperfine coupling on (1)H relaxation of solvent molecules depending on frequency and time-scale of the translational dynamics was discussed in detail. Special attention was given to the effect of isotope substitution ((14)N∕(15)N). In parallel, the influence of rotational dynamics on the inter-molecular (radical - solvent) electron spin - proton spin dipole-dipole coupling (which is the relaxation mechanism of solvent protons) was investigated. The rotational dynamics is of importance as the interacting spins are not placed in the molecular centers. It was demonstrated that the role of the isotropic hyperfine coupling increases for slower dynamics, but it is of importance already in the fast motion range (10(-9)m(2)∕s). The isotope effects is small, however clearly visible; the (1)H relaxation rate for the case of (15)N is larger (in the range of lower frequencies) than for (14)N. It was shown that when the diffusion coefficient decreases below 5 × 10(-11) m(2)∕s electron spin relaxation becomes of importance and its role becomes progressively more significant when the dynamics slows done. As far as the influence of the rotational dynamics is concerned, it was show that this process is of importance not only in the range of higher frequencies (like for diamagnetic solutions) but also at low and intermediate frequencies.  相似文献   

4.
We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.  相似文献   

5.
6.
(1)H spin-lattice relaxation rates R(1) = 1/T(1) have been measured for partly deuterated glycerol-h(5) diluted in fully deuterated glycerol-h(0) for progressively lower concentrations of glycerol-h(5). By means of the field cycling (FC) technique relaxation dispersion data, R(1)(ω), have been collected for several temperatures in the frequency range of 10 kHz-20 MHz. In order to disclose the spectral shape of the intra- and intermolecular relaxation, extrapolation of the relaxation data to the zero concentration limit has been performed. The paper confirms that the low frequency excess contribution to the total relaxation rate R(1)(ω) previously reported for several liquids is of intermolecular origin and reflects translational motion, whereas the high-frequency part is attributed to molecular rotation. Thus, intra- and intermolecular relaxation contributions are spectrally separated. The intermolecular relaxation itself contains also a contribution from rotational motion, which is due to non-central positions of the interacting nuclei in the molecule. This eccentricity effect is quantitatively reproduced by treating the intermolecular spectral density as a sum of translational-like (described by the free diffusion model) and rotational-like contributions (described by a Cole-Davidson function). Applying frequency-temperature superposition master curves as well as individual relaxation dispersion data, R(1)(ω), are analyzed. It is demonstrated that, in spite of the rotational influence, the translational diffusion coefficients, D(T), can be extracted from the (1)H relaxation dispersion which gives (1)H NMR relaxometry the potential to become a routine technique determining the diffusion coefficient in liquids.  相似文献   

7.
We report rigorous quantum calculations of the translation-rotation (T-R) eigenstates of the H2 molecule in C60. The resulting level structure can be explained in terms of a few dominant features. These include the coupling between the orbital and the rotational angular momenta of H2 to give the total angular momentum lambda, and the splitting of the sevenfold degeneracy of T-R levels with lambda=3 by the nonsphericity of C60, according to the rules of the icosahedral I h group.  相似文献   

8.
A brief résumé is given of the role of structural heterogeneity, magnetic dipolar couplings, molecular structure, and molecular motion in determining the 1H NMR spectra and relaxation properties of heterogeneous solids such as semicrystalline polymers. Measurements of 1H spin-lattice relaxation in laboratory (T1) and rotating frames (T) are reported for a number of solid polyolefin samples. These include solution-crystallized and melt-crystallized polyethylene, annealed and quenched isotactic polypropene, and isotactic polybut-1-ene. In addition, broad-line 1H spectra, both normal and partially (T) relaxed, are reported for these materials as well as a number of pulsed NMR experiments having the philosophy of the so-called Goldman–Shen experiment. Spin-lattice relaxation (T1) for all samples is a single exponential process, whereas rotating-frame relaxation comprises three exponential processes both on-resonance (θ = 90°) and off-resonance at the magic angle (θ = 54.7°), with the latter generally being much slower. The spectra show clearly the existence of components having differing degrees of mobility and, with the exception of the solution-crystallized polyethylene, the partially (T) relaxed spectra indicate a correlation between breadth of resonance line and magnitude of T. The Goldman–Shen-type experiments indicate a spin-diffusional transport of magnetization between the different spectral and (T) components. A computer program has been used to simulate the NMR behavior of a three-region system comprising repeating units of infinite lamellae of different widths, each region having different intrinsic relaxation times and spin diffusion coefficients. The results demonstrate that the observed 1H NMR behavior of these samples can be interpreted in terms of this model and that, inter alia, the long-time T behavior reflects, qualitatively, the time taken for magnetization to diffuse a distance of the order of the dimensions of the region to which it corresponds.  相似文献   

9.
The dynamic-structural changes and polymer - solvent interactions during the thermotropic phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of polymer concentrations (c = 0.1-60 wt.-%) were studied combining the measurements of 1H NMR spectra, spin-spin (T2) and spin-lattice (T1) relaxation times. Phase separation in solutions results in a marked line broadening of a major part of polymer segments, evidently due to the formation of compact globular-like structures. The minority (∼15%) mobile component, which does not participate in the phase separation, consists of low-molecular-weight fractions of PVME, as shown by GPC. Measurements of spin-spin relaxation times T2 of PVME methylene protons have shown that globular structures are more compact in dilute solutions in comparison with semidilute solutions where globules probably contain a certain amount of water. A certain portion of water molecules bound at elevated temperatures to (in) PVME globular structures in semidilute and concentrated solutions was revealed from measurements of spin-spin and spin-lattice relaxation times of residual HDO molecules.  相似文献   

10.
We report here the synthesis of the new hydride complexes (C5H4CH(CH2CH2)2NMe)- RuH(PPh3)2 (1) and [(C5H4CH(CH2CH2)2NHMe)-RuH(PPh3)2](BF4) (2), the X-ray crystal structures of 1 and 2, and an unprecedented observation of extremely short relaxation times in a monohydride complex as well as in the reaction of CpRuH(PPh3)2 with a variety of acidic proton donors. The relaxation is much faster than expected for a dipole-dipole process involving the two dihydrogen-bonded protons, but no origin for the effect could be suggested.  相似文献   

11.
Proton NMR spin–lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38–65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin–lattice relaxation times in the rotating frame T1ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.  相似文献   

12.
NVT molecular dynamics simulations were performed on liquid o-terphenyl as a function of temperature in the range 320-480 K. Computed translational diffusion coefficients displayed the non-Arrhenius behavior expected of a fragile glass-forming liquid and were in good, semiquantitative agreement with experimental results. Rotational correlation functions calculated for various vectors within the molecule exhibited a very short time (0-1 ps) initial decay, followed by a reversal, which corresponds to free reorientation within the "solvent" cage prior to collision with a wall. Rotational correlation times of three orthogonal vectors fixed on the central benzene were close to equal at all temperatures, indicating nearly isotropic overall molecular reorientation. The average correlation times exhibited a non-Arrhenius temperature dependence and were in very good agreement with experimental values derived from 2D and 1H NMR relaxation times. Correlation times of vectors located on the lateral phenyl rings were used to calculate the "spinning" internal rotation diffusion coefficients, which were approximately twice as great as the overall rotational diffusion constants, indicating rapid internal rotation of the phenyl side groups over wide ranges of angle in the liquid.  相似文献   

13.
A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization evolution from homonuclear scalar couplings that interferes with the extraction of accurate transverse relaxation rates. It is shown, however, that by using a labeling strategy whereby proteins are produced using {(13)C,(1)H}-glucose and D(2)O a significant number of 'isolated' side-chain (1)H spins are generated, eliminating such effects. It thus becomes possible to record (1)H dispersion profiles at the β positions of Asx, Cys, Ser, His, Phe, Tyr, and Trp as well as the γ positions of Glx, in addition to the methyl side-chain moieties. This brings the total of amino acid side-chain positions that can be simultaneously probed using a single (1)H dispersion experiment to 16. The utility of the approach is demonstrated with an application to the four-helix bundle colicin E7 immunity protein, Im7, which folds via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale. The extracted (1)H chemical shift differences at side-chain positions provide valuable restraints in structural studies of invisible, excited states, complementing backbone chemical shifts that are available from existing relaxation dispersion experiments.  相似文献   

14.
Stable nitroxide radicals are useful to construct molecular magnetic systems. Particularly, radicals substituted by –COOH and –CONH2 can be coordinated to magnetic metal ions and may be used as cladding reagents of gold nano-particles for modifying magnetism. Nitroxide molecules with unsaturated five-member ring have almost planner structure and electron spin delocalization may be expected. We determined the hyperfine coupling constants (hfcc) of 1H, 2H and 13C of a series of nitroxide radicals with five-member ring. Experimental values of hfcc were compared with those deduced from calculations based on density functional theory. The electron spin density distribution at β position of ring was sensitive to the ring structure, although the electron spin density at β position is small compared with N–O site. Magnetic susceptibility and UV–Vis absorption spectra were also measured and discussed.  相似文献   

15.
16.
Equilibrium NPT and NVT molecular dynamics simulations were performed on liquid benzene over an extended range of temperature (from 260 to 360 K) using the COMPASS force field. Densities and enthalpies of vaporization (from cohesive energy densities) were within 1% of experiment at all temperatures. tumbling and spinning rotational diffusion coefficients, D(perpendicular) and D(parallel), computed as a function of temperature, agreed qualitatively with the results of earlier reported experimental and computational investigations. Generally, it was found that D(parallel)/D(perpendicular) approximately 1.4-2.5 and the activation energy for tumbling was significantly greater than for spinning about the C6 axis [Ea(D(perpendicular)) = 8.1 kJ mol(-1) and Ea(D(parallel)) = 4.5 kJ mol(-1)]. Calculated translational diffusion coefficients were found to be in quantitative agreement with experimental values at all temperatures [deviations were less than the scatter between different reported measurements]. In addition, translational diffusion coefficients were computed in the molecule-fixed frame to yield values for Dxy (diffusion in the plane of the molecule) and Dz (diffusion perpendicular to the plane). It was found that the ratio Dxy/Dz approximately 2.0, and that the two coefficients have roughly equal activation energies. This represents the first atomistic molecular dynamics study of translational diffusion in the molecular frame.  相似文献   

17.
The dynamics of solvent and rotational relaxation of Coumarin 480 and Coumarin 490 in glycerol containing bis-2-ethyl hexyl sulfosuccinate sodium salt (AOT) reverse micelles have been investigated with steady-state and time-resolved fluorescence spectroscopy. We observed slower solvent relaxation of glycerol confined in the nanocavity of AOT reverse micelles compared to that in pure glycerol. However, the slowing down in the solvation time on going from neat glycerol to glycerol confined reverse micelles is not comparable to that on going from pure water or acetonitrile to water or acetonitrile confined AOT reverse micellar aggregates. While solvent relaxation times were found to decrease with increasing glycerol content in the reverse micellar pool, rotational relaxation times were found to increase with increase in glycerol content.  相似文献   

18.
Time-dependent, quantum reaction dynamics wavepacket approach is employed to investigate the impacts of the translational, vibrational, and rotational motion on the HD+H(3)(+) → H(2)D(+) + H(2) reaction using the Xie-Braams-Bowman potential energy surface [Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 224307 (2005)]. We treat this five atom reaction with a seven-degree-of-freedom model by fixing one Jacobi and one torsion angle related to H(3) (+) at the lowest saddle point geometry of the potential energy surface. The initial state selected reaction probabilities show that the rotational excitations of H(+)-H(2) greatly enhance the reactivity with the reaction probabilities increased double at high rotational states compared to the ground state. However, the vibrational excitations of H(3) (+) hinder the reactivity. The ground state reaction probability shows no reaction threshold for this exoergic reaction, and as the translational energy increases, the reaction probability decreases. Furthermore, reactive resonances and zero point energy play very important roles on the reaction dynamics. The obtained integral cross section has the character of an exoergic reaction without a threshold: it decreases with the translational energy increasing. The calculated thermal rate constants using this seven-degree-of-freedom model are in agreement with a later experiment measurement.  相似文献   

19.
In this study, we have investigated the singlet oxygen ((1)Delta(g)) generation mechanism using phthalocyaninatosilicon (SiPc) covalently linked to nitroxide radicals (NRs), and we succeeded in increasing the singlet oxygen quantum yield (Phi(Delta)) by linking the NRs. This originates from both an increase in the triplet quantum yield and excited-state lifetimes long enough to utilize photochemical reactions. Because the electron exchange interactions with paramagnetic species were known to result only in very fast excited-state relaxation, leading to a decrease in photochemical reaction yields, this increase in Phi(Delta) is an unusual and precious example for increasing photochemical reaction yields by electron exchange interactions with paramagnetic species. In addition, our experiments and theoretical analyses show that the spin-selective energy transfer rate constant is not influenced by linking the NRs and can be evaluated by the product of spin-statistical factors and matrix elements between the initial and final states.  相似文献   

20.
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on hydrogens covalently attached to carbon and oxygen atoms in 13C,15N labeled and fully protonated or fractionally deuterated proteins to uniformly enhance longitudinal relaxation of the 1HN spins and concomitantly the sensitivity of multipulse NMR experiments. The proposed longitudinal relaxation optimization is implemented in the 2D [15N,1H]-LTROSY, 2D [15N,1H]-LHSQC and 3D LTROSY-HNCA experiments yielding the factor 2-2.5 increase of the maximal signal-to-noise ratio per unit time at 600 MHz. At 900 MHz, the predicted decrease of the 1HN longitudinal relaxation times can be as large as one order of magnitude, making the proposed method an important tool for protein NMR at high magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号