首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have numerically investigated the characteristics of the pulse evolution in a passively mode-locked thulium-doped fiber laser with net anomalous cavity dispersion. For the fixed resonator configuration, single-, dual-, triple-, and quadruple-pulses are generated successively by enhancing the pump power or reducing the output ratio. The characteristics of the single or multiple pulses are investigated with various cavity lengths. The separation between the two coexisting pulses changes with the pump power due to the interaction between the soliton and the dispersive waves, and then the two randomly distributed pulses could finally evolve into a soliton pair with fixed separation. According to the results of the numerical simulation, the multiple pulses are found to be generated via pulse splitting and the pulse splitting threshold decreases with the increase of the cavity length.  相似文献   

2.
在激光器输出平均功率一定的情况下,峰值功率主要取决于调制频率和脉冲宽度。这使得脉冲宽度的调节具有一定的实际应用价值。对调Q掺铥双包层光纤激光器进行研究,首先确定了激光器的最佳输出透过率,在65%最佳透过率时,得到2 m激光的输出功率3.9 W,斜率效率为31%。外接一个信号发生器,信号门宽从12 s变化到18 s,并测量了调制频率分别在30 kHz、40 kHz和50 kHz时输出脉冲宽度的变化情况,得到了555.6 W的最高峰值功率,实现了脉冲宽度从163.4 ns到207.9 ns的变化。实验情况证实了用外接信号发生器能有效控制激光器的输出脉冲宽度。  相似文献   

3.
4.
The excitation of the classic Morse oscillator by an ultrashort electromagnetic pulse with a linear frequency chirp is studied theoretically. Formulas are derived for the oscillation amplitude and the radiation power averaged over a period as functions of the excitation energy for free oscillations of the Morse oscillator. Analytical expressions for describing the oscillator motion after the end of the pulse are obtained in the harmonic limit. In the general case of arbitrary parameters of the problem, the specific features of an excited Morse oscillator are analyzed numerically. Prominence is given to the effect of chirp on the excitation energy. The consideration is performed in terms of dimensionless variables, which makes it possible to apply the results obtained to a wide range of molecular systems and exciting-pulse parameters.  相似文献   

5.
Gang-Tai Zhang 《Molecular physics》2013,111(20):3117-3125
We theoretically demonstrate an efficient method for producing an isolated ultrashort attosecond pulse by high-order harmonic generation in an intense few-cycle chirped laser pulse. Our simulation calculations show that the harmonic spectrum reveals an ultrabroad extreme ultraviolet supercontinuum when the initial state is prepared in a coherent superposition of the ground and first excited states. It is also shown that the method can enhance the short quantum path and eliminate the long one, and then an isolated 23-attosecond pulse is produced. By properly adjusting the chirp parameter, a clean single attosecond pulse as short as 11 attoseconds is directly obtained.  相似文献   

6.
Agger S  Povlsen JH  Varming P 《Optics letters》2004,29(13):1503-1505
We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a single-frequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors' knowledge, this is the first report of a single-frequency DFB fiber laser that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers.  相似文献   

7.
High-peak-power laser systems are based on the chirped pulse amplification (CPA) technique. CPA laser system needs a mode-locked laser oscillator for stable ultrashort pulse laser generation. We report a single-mode fiber CPA system which consists of stable mode-locked Yb-doped fiber laser oscillator with a wide tuning range, chirped fiber Bragg grating stretcher, and two Yb-doped fiber amplifiers. The single-mode fibers can generate high-quality and single-mode beams which are stable for long time.  相似文献   

8.
We study the Fresnel diffraction of a phase grating under the illumination of a chirped femtosecond laser pulse. Using spatial spectrum theory, first we extract the central wavelength signal from the diffraction wave of the chirped pulse through a diaphragm. Then the central wavelength waves are directed to interfere in remote regions by two reflectors. The interference stripes at different distance will be exactly the same in interference region. Since the intensity distribution of the stripes is related to the chirp parameter of the femtosecond pulse, through measuring the stripe intensity distribution, we can indirectly detect the chirp parameter of the femtosecond pulse.  相似文献   

9.
《中国物理 B》2021,30(5):54205-054205
We experimentally demonstrated a stable multi-wavelength bright–dark pulse pair in a mode-locked thulium-doped fiber laser(TDFL). The nonlinear polarization rotation(NPR) and nonlinear optical loop mirror(NOLM) were employed in a figure-eight cavity to allow for multi-wavelength mode-locking operation. By incorporating different lengths of high birefringence polarization-maintaining fiber(PMF), the fiber laser could operate stably in a multi-wavelength emission state. Compared with the absence of the PMF, the birefringence effect caused by PMF resulted in rich multi-wavelength optical spectra and better intensity symmetry and stability of the bright–dark pulse pair.  相似文献   

10.
A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.  相似文献   

11.
By numerical simulations and analysis, we proposed a fiber with multi-hollow-core structure for optical pulse compression of high energy ultrashort laser pulses. In this scheme, different parts of a high-energy flat-top pulse are coupled into different hollow cores of such fiber and each of the cores functions as an independent traditional hollow-core fiber compressor. After the multi-hollow-core fiber, the output beams are collimated and compressed to few-cycle level. Then they can be focused to ultra-high intensity. This method can easily be scaled to compressing pulses of large beam size with high energy without limit in principle.  相似文献   

12.
Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992,optical parametric chirped pulse amplification(OPCPA)became the most promising method for the amplification of broadband optical pulses.In the meantime,we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers.The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level.Meanwhile,the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field.In this paper,we overview the basic principles,trends in development,and current state of the ultrashort and laser systems based on OPCPA,respectively.  相似文献   

13.
We report a novel, Tm-doped photonic crystal fiber (PCF) actively Q-switched oscillator that provides ~8.9 kW peak power with 435 μJ, 49 ns pulses at 10 kHz repetition rate at 2 μm wavelength. This fiber has a mode-field area >1000 μm2, the largest of any flexible PCF providing diffraction-limited beam quality to the best of our knowledge. As an application, the oscillator is used as pump to generate >350 nm broadening in ~50 m of SMF-28 fiber.  相似文献   

14.
The nonlinear scattering of an ultrashort laser pulse by free electrons is considered. The pulse is described in the “Mexican hat” wavelet basis. The equation of motion for a charged particle in the field of a plane electromagnetic wave has an exact solution allowing, together with the instant spectrum approximation, the calculation of the intensity of nonlinear Thomson scattering for a high-intensity laser pulse. The spectral distribution of scattered radiation for the entire pulse duration is found by integrating with respect to time. The maximum of the emission spectrum of a free electron calculated in 1019–1021 W/cm2 fields lies in the UV spectral region between 3 and 12 eV. A part of the continuous spectrum achieves high photon energies. One percent of the scattered energy for the field intensity 1020 W/cm2 is concentrated in the range ħω > 2.7 × 102 eV, for a field intensity of 1021 W/cm2 in the range ħΩ > 7.9 × 102 eV, and for an intensity of 1022 W/cm2 in the range ħΩ > 2.45 × 105 eV. These results allow us to estimate nonlinear scattering as a source of hard X-rays.  相似文献   

15.
Experimental investigations of the late-time ion structures formed in the wake of an ultrashort, intense laser pulse propagating in a tenuous plasma have been performed using the proton imaging technique. The pattern found in the wake of the laser pulse shows unexpectedly regular modulations inside a long, finite width channel. On the basis of extensive particle in cell simulations of the plasma evolution in the wake of the pulse, we interpret this pattern as due to ion modulations developed during a two-stream instability excited by the return electric current generated by the wakefield.  相似文献   

16.
Recent experiments have utilizied high-power subpicosecond laser pulses to effect the ultrafast heating of a condensed material to temperatures far above the critical temperature. Using optical diagnostics it was established that a complicated density profile with sharp gradients, differing substantially from an ordinary rarefaction wave, forms in the expanding heated matter. The present letter is devoted to the analysis of the expansion of matter under the conditions of the experiments reported by D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Science 109/110, 1 (1996); K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Proc. Soc. Photo-Opt. Instum. Eng. 3343, 46 (1998); and, K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998). It is shown that if the unloading adiabat passes through the two-phase region, a thin liquid shell filled with low-density two-phase matter forms in the expanding material. The shell moves with a constant velocity. The velocity in the two-phase material is a linear function of the coordinate (flow with uniform deformation), and the density is independent of the coordinate and decreases with time as t −1. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 4, 284–289 (25 February 1999)  相似文献   

17.
《Physics letters. A》2002,300(1):76-81
By using the corrected solutions for an ultrashort laser pulse, we study the laser-driven electron violent acceleration in vacuum. Our simulations demonstrate that an ultrashort laser pulse with an intensity a0eE0/meωc=3 can accelerate electrons to an energy more than 0.5 GeV. The scaling laws for the net energy gain in different pulse length and laser radius at focus are also studied. Its acceleration mechanism is found to be ponderomotive acceleration.  相似文献   

18.
19.
Wu J  Yao Z  Zong J  Jiang S 《Optics letters》2007,32(6):638-640
A 64 W fiber laser at 1.9 microm with a slope efficiency of 68% with respect to the launching pump power at 800 nm was demonstrated in a one-end pump configuration using a piece of 20 cm long newly developed thulium-doped germanate glass double-cladding single-mode fiber. A quantum efficiency of 1.8 was achieved. An output laser power of 104 W at 1.9 microm was demonstrated from a piece of 40 cm long fiber with a dual-end pump configuration.  相似文献   

20.
利用非线性光环形镜(NOLM)的可饱和吸收特性实现了可自启动的2 m全光纤高能量被动锁模掺铥光纤激光器。当泵浦功率大于3 W时,激光器工作在连续或不稳定脉冲运转状态;泵浦功率达到4.69 W后,输出为自启动锁模脉冲,重复频率4.26 MHz,中心波长2 061.5 nm,光谱半极大宽度18.1 nm,平均输出功率8.8 mW;继续增加泵浦功率到最大值7.56 W,可以得到中心波长2 062.2 nm、光谱半极大宽度17.1 nm、斜率效率为6.2%、脉冲宽度和能量分别为424 fs和65.6 nJ的稳定锁模脉冲。这是目前已报道的在未经放大情况下脉冲能量最高的2 m锁模脉冲光纤激光器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号