首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The detection of thin embedded layers using normal incidence ultrasound   总被引:1,自引:0,他引:1  
A theoretical investigation of the use of normal incidence ultrasonic reflection measurements for the detection and characterization of thin layers embedded between two much thicker media has been carried out. It has been shown that the form of the relationship between the normal incidence longitudinal reflection coefficient and frequency is defined by the reflection coefficients at zero frequency and at half the resonance frequency of the layer. The reflection coefficient at zero frequency is solely a function of the impedances of the media on either side of the layer, while that at half the resonance frequency of the layer is a function of the impedances of all three media. In general, the sensitivity of the reflection coefficient to the presence of the layer increases as the product of frequency and layer thickness increases, the maximum sensitivity being at half the resonance frequency of the layer. Unfortunately, with thin layers, it is generally not practical to test at this frequency. However, the reflection coefficient curve can, in principle, be reconstructed from data measured at lower frequencies and the sensitivity of the reflection coefficient at lower frequencies to the characteristics of the layer can be predicted from the sensitivity at half the resonance frequency. The sensitivity is also critically dependent on the relative impedances of the three media and is generally greatest when the half spaces on either side of the layer have the same impedance. With favourable impedances, it is possible to detect layers whose thickness is a small fraction of the wavelength of the ultrasonic waves employed. However, with other combinations of impedances, the detection of much thicker layers is not possible.  相似文献   

2.
We introduce an effective and facile technique that achieves robust amine functionalization of Au nanoparticles by binding the polyamine poly(allylamine hydrochloride) (PAH) to the surface using a dithiocarbamate (DTC) modification of the side group amines. The DTC anchor confers superior short- and long-term colloidal stability compared to a physisorbed layer of the same polymer. We also demonstrate that the surface amines are available for further functionalization and that at least four alternately charged polyelectrolyte layers can be assembled onto the particles. The latter modification could not be performed on a physisorbed functional layer, so this demonstrates the effectiveness of the DTC groups in robustly anchoring the polymer to the particle surface. At the same time, the DTC-anchored polymer layer is less than 2 nm thick in the dry state. This is one-third of the thickness of a physisorbed polyamine layer deposited under the same conditions, and sufficiently thin that the plasmonic field enhancement on the metal particle remains accessible to the outside environment. We attribute the difference in thickness to multiple DTC bonds on each polymer chain forcing it into much closer conformity to the particle surface than in the physisorbed case.  相似文献   

3.
The conversion from spatial propagating waves to surface plasmon polaritons (SPPs) has been well studied, and shown to be very efficient by using gradient‐index metasurfaces. However, feeding energies into and extracting signals from functional plasmonic devices or circuits through transmission lines require the efficient conversion between SPPs and guided waves, which has not been reported, to the best of our knowledge. In this paper, a smooth bridge between the conventional coplanar waveguide (CPW) with 50 Ω impedance and plasmonic waveguide (e.g., an ultrathin corrugated metallic strip) has been proposed in the microwave frequency, which converts the guided waves to spoof SPPs with high efficiency in broadband. A matching transition has been proposed and designed, which is constructed by gradient corrugations and flaring ground, to match both the momentum and impedance of CPW and the plasmonic waveguide. Simulated and measured results on the transmission coefficients and near‐filed distributions show excellent transmission efficiency from CPW to a plasmonic waveguide to CPW in a wide frequency band. The high‐efficiency and broadband conversion between SPPs and guided waves opens up a new avenue for advanced conventional plasmonic integrated functional devices and circuits.  相似文献   

4.
We present a method using attenuated total reflection (ATR) with excitation of surface plasma waves at different wavelengths and angles of incidence, which allows an accurate determination of the thickness and optical constants of absorbing surface layers from optical measurements only. This method is applied to the case of very thin Au surface layers on (111)Ag, and the results are discussed.  相似文献   

5.
Sol-gel applications require very thick layers with a good understanding of the interfaces. To address this problem, we have installed at CEA Le Ripault a characterization bench using guided waves with assistance from the IM2NP lab in Marseille. This bench allows us to measure the thickness and the refractive index and determine the extinction coefficient of a thin layer. We can distinguish losses at interfaces from those in the bulk according to the chosen propagation mode. This allows us to know if we can stack elementary layers to make thick layers without incurring problems.  相似文献   

6.
Conducting interfaces and nano conducting layers can support surface electromagnetic waves. Uniform charge layers of non-zero thickness and their asymptotic behavior toward conducting interfaces of infinitely small thicknesses, where the thin charge layer is modeled via a surface conductivity σ s , are already studied. Here, the possible effects of inhomogeneity in the conductivity profile of the thin conducting layers are investigated for the first time and a new approximate yet accurate enough analytical formulation for mode extraction in such structures is given. In order to rigorously analyze the structure and justify the proposed approximate formulation, the Galerkin’s method with Legendre polynomial basis functions is applied, i.e. the transverse electric field for the TE polarized surface waves and the transverse magnetic field for the TM polarized surface waves are each expanded in terms of Legendre polynomials and then each eigenmode; subjected to appropriate boundary conditions, is sought in the complete space spanned by Legendre basis functions. The proposed approximate solution is then proved to be accurate. In particular, sinusoidal fluctuations are introduced into formerly uniform conductivity profiles and it is numerically demonstrated that surface electromagnetic waves supported by nano conducting layers are not much sensitive to the very shape of conductivity profiles.  相似文献   

7.
李有权  付云起  张辉  袁乃昌 《物理学报》2009,58(6):3949-3954
采用传输线模型对高阻表面表面阻抗进行建模,准确计算垂直入射条件下高阻表面的反射相位.在垂直入射条件下,过孔的影响可以忽略,将高阻表面等效为具有容性的贴片阵与具有感性的介质层的并联,利用传输线原理求得高阻表面的反射系数,再得到其反射相位.计算了不同参数的高阻表面反射相位,传输线模型计算反射相位与数值方法计算结果符合较好.制作了不同参数的高阻表面并测量其反射相位,实验结果表明传输线模型计算反射相位结果与测量结果基本符合,证明了传输线模型的正确性. 关键词: 高阻表面 反射相位 传输线模型  相似文献   

8.
An exact analytic solution is derived for the 2D acoustic pressure field generated by a time-harmonic line mass source located above an impedance surface with uniform grazing flow. Closed-form asymptotic solutions in the far field are also provided. The analysis is valid for both locally-reacting and nonlocally-reacting impedances, as is demonstrated by analyzing a nonlocally reacting effective impedance representing the presence of a thin boundary layer over the surface. The analytic solution may be written in a form suggesting a generalization of the method of images to account for the impedance surface. The line source is found to excite surface waves on the impedance surface, some of which may be leaky waves which contradict the assumption of decay away from the surface predicted in previous analyses of surface waves with flow. The surface waves may be treated either (correctly) as unstable waves or (artificially) as stable waves, enabling comparison with previous numerical or mathematical studies which make either of these assumptions.  相似文献   

9.
段俐  康琦  胡文瑞 《中国物理快报》2008,25(4):1347-1350
We investigate the surface deformations of buoyant-thermocapillary convection in a rectangular cavity due to gravity and temperature gradient between the two sidewalls. The cavity is 52mm×42 mm in horizontal cross section, the thickness of liquid layer h is changed from 2.5 mm to 6.5 mm. Surface deformations of h = 3.5 mm and 6.0mm are discussed and compared. Temperature difference is increased gradually, and the flow in the liquid layer will change from stable convection to unstable convection. Two kinds of optical diagnostic system with image processor are developed for study of the kinetics of buoyant-thermocapillary convection, they give out the information of liquid free surface. The quantitative results are calculated by Fourier transform and correlation analysis, respectively. With the increasing temperature gradient, surface deformations calculated are more declining. It is interesting phenomenon that the inclining directions of the convections in thin and thick liquid layers are different. For a thin layer, the convection is mainly controlled by thermocapillary effect. However, for a thick layer, the convection is mainly controlled by buoyancy effect. The surface deformation theoretically analysed is consistent with our experimental results. The present experiment proves that surface deformation is related to temperature gradient and thickness of the liquid layer. In other words, surface deformation lies on capillary convection and buoyancy convection.  相似文献   

10.
A method is proposed for determining the thickness of thin (0.1–5.0 μm) polymer layers and coatings by means of infrared frustrated total internal reflection (FTIR) spectroscopy. This method is based on an analytic expression derived for the dependence of the intensities of absorption bands in IR FTIR spectra on the thickness of a polymer layer. The method is tested on model samples consisting of a thick film of polyethylene terephthalate with a layer of different thicknesses of polystyrene deposited on it. The advantage of this method is the ability to determine the thickness of thin polymer layers deposited on bulk or opaque polymer substrates. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 881–885, November–December, 2008.  相似文献   

11.
杨鹏  秦晋  徐进  韩天成 《物理学报》2019,68(8):87802-087802
设计并加工了一种超薄柔性透射型吸收器,总体厚度为0.288 mm,可实现柔性弯曲,容易做到与曲面目标共形.该吸收器由三层结构组成,底层是金属光栅,中间为介质层,表面单元由两条平行放置的尺寸不同的金属线组成.仿真和实验结果表明,对横电波在5和7 GHz的吸收分别达到97.5%和96.0%,对横磁波在3.0—6.5 GHz都能保持90%以上的透射率.两个吸收频点可分别独立调节,增加了设计的灵活性.另外,当入射角增大到60°时,该吸收器的性能基本不受影响,表现出良好的广角特性.  相似文献   

12.
Interference measurements of small variations in the velocity and attenuation of surface acoustic waves (SAWs) are used to investigate water layers up to 15 nm thick adsorbed on the surface of a lithium niobate crystal. The frequency dependence of the relative variation of the SAW velocity with the adsorption of water vapor is measured in the range from 40 to 400 MHz. Acoustic techniques are used to experimentally estimate the frequency dependence of the dielectric constant of adsorbed water and its dipole relaxation frequency along with the dependence of the adsorption layer thickness on the water vapor pressure in the surrounding medium. A simple expression is proposed for calculating the dispersion of the SAW velocity in a solid loaded with a thin liquid layer.  相似文献   

13.
韩炜  毛捷  金士杰 《声学学报》2014,39(4):467-472
研究了应用低频超声垂直入射反射波实现套管-水泥界面流体微间隙薄层厚度的反演方法。应用灵敏度函数比较分析了分层系统反射谱各阶谐振频率处的相位跳变量较之各阶谐振频率作为反演特征量的优势。通过目标函数分析,选取分层系统3~10阶谐振频率处相位跳变量作为特征量,利用BP神经网络实验获得0.1~1.0 mm内不同间隙层厚度的反演结果。反演结果与真实值的平均相对误差为4.6%,最小反演厚度仅为波长的18%。所选取的相位特征量也可用于其它层状高声阻抗介质下的薄层厚度反演。   相似文献   

14.
We show that layers of acousto-optic gyrotropic paratellurite crystals perturbed by ultrasound can be used as efficient light modulators in transmission and reflection mode. We have established that the relative intensities of the diffracted waves are determined by the ratio of the refractive indices of the bounding media, the intensity of the ultrasound, and the thickness of the modulated layer. We show that for an asymmetric diffraction structure, efficient acousto-optic conversion is possible in reflection mode, and the weak effect of the gyrotropy is due to its suppression by Fresnel reflection at the boundaries of the layer. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 819–823, November–December, 2006.  相似文献   

15.
Wang Z  Li G  Xiao F  Lu F  Li K  Xu A 《Optics letters》2011,36(23):4584-4586
We observe and theoretically analyze the plasmonic analog of the critical angle phenomenon in optical transmission through subwavelength gratings milled in an optically thick metal film. The total transmission from a denser medium to a less dense one vanishes while the total reflection holds very strong, providing the incidence angle increases past the plasmonic critical angle (PCA). The conditions and physical origins of the total internal reflection above the PCA are clarified.  相似文献   

16.
We have performed measurements of electric current in pentacene organic thin film transistors in situ, during growth of pentacene layer. The source and the drain contacts were fabricated with varying thickness of Ti layer, followed by a thick Au layer. Our measurements confirm the hypothesis that only the first two molecular layers of pentacene are responsible for the transport of most of the electric current between the source and the drain. Consequently, several-nm thick Ti layer hinders charge carrier injection from source into the channel. This is manifested as a delayed onset of electric current when the thickness of Ti layer exceeds the thickness of two pentacene molecular layers.  相似文献   

17.
两侧有固体层负载时板中Lamb波的传播   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了薄板二面有固体导负载时板中Lamb波的传播,从弹性波理论出发并结合应的边界条件,导出板中Lamb波的色散方程,数值计算表示,不管作为自由状态时板中Lamb波相速(板厚取定时)是大于或小于外层固体的声表面波波速,板中对称及反对称模式的Lamb波相速都随着外层固体层厚度增加而变化并且渐近于外层固体的声表面波波速,数值计算又表明,对很薄的板,板中对称及反对称模式的相速均随负载板的厚度呈线性变化  相似文献   

18.
含有源频率选择表面可调复合吸波体   总被引:1,自引:0,他引:1       下载免费PDF全文
陈谦  江建军  别少伟  王鹏  刘鹏  徐欣欣 《物理学报》2011,60(7):74202-074202
基于传输线等效理论,设计了含有源频率选择表面(active frequency selective surface,AFSS)的三层可调复合吸波体,第一层是表面层,为AFSS衬底;中间层是AFSS层,由频率选择表面(frequency selective surface,FSS)和PIN二极管阵列构成;第三层是介质层.反射率测量结果表明,通过调节PIN二极管阵列偏置电压可以动态调节吸波体反射特性,在偏置电压为5 V时,可获得最佳吸波性能,在5—15 GHz和5.3—13 GHz频段分别可获得-8 dB和- 关键词: 频率选择表面 复合吸波材料 反射率 PIN二极管  相似文献   

19.
Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domMn method. It is shown that the reflection coemcients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.  相似文献   

20.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号