首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kβ X-ray emission spectroscopy (XES) is emerging as a powerful tool for the study of chemical bonding. Analyses of the Kβ XES of ferrocene (Fc) and ferrocenium (Fc(+)) are presented as further demonstrations of the capabilities of the technique. Assignments of the valence to core (V2C) region of these spectra as electric dipole-allowed cyclopentadienyl (Cp) → Fe 1s transitions demonstrate that XES affords electronic structural insight into the energetics of ligand-based molecular orbitals (MOs). Combined with K-edge X-ray absorption spectroscopy (XAS), we show that XES can provide analogous information to photoemission spectroscopy (PES). Density functional theory (DFT) analyses reveal that the V2C transitions in Fc/Fc(+) derive their intensity from Fe 4p admixture (on the order of 5-10%) into the Cp-based MOs from which they originate. These 4p admixtures confer bonding character to the Cp-based a(2u) and e(1u) MOs to at least the extent of backbonding contributions to frontier MOs from higher-lying Cp π* MOs.  相似文献   

2.
The [FeFe]‐hydrogenase model complexes [(μ‐pdt){Fe(CO)3}2], [(μ‐edt){Fe(CO)3}2], and [(μ‐mdt){Fe(CO)3}2], where pdt=1,3‐propanedithiolate, edt=1,2‐ethanedithiolate, and mdt=methanedithiolate, undergo wavelength dependent photodecarbonylation in hydrocarbon matrices at 85 K resulting in multiple decarbonylation isomers. As previously reported in time‐resolved solution photolysis experiments, the major photoproduct is attributed to a basal carbonyl‐loss species. Apical carbonyl‐loss isomers are also generated and may undergo secondary photolysis, resulting in β‐hydride activation of the alkyldithiolate bridge, as well as formation of bridging carbonyl isomers. For [(μ‐bdt){Fe(CO)3}2], (bdt=1,2‐benzenedithiolate), apical photodecarbonylation results in generation of a 10 π‐electron aromatic FeS2C6H4 metallacycle that coordinates the remaining iron through an η5 mode.  相似文献   

3.
The activation of molecular hydrogen is of interest both from a chemical and biological viewpoint. The covalent bond of H(2) is strong (436 kJ mol(-1)). Its cleavage is catalyzed by metals or metal complexes in chemical hydrogenation reactions and by metalloenzymes named hydrogenases in microorganisms. Until recently only two types of hydrogenases are known, the [FeFe[-hydrogenases and [NiFe[-hydrogenases. Both types, which are phylogenetically unrelated, harbor in their active site a dinuclear metal center with intrinsic CO and cyanide ligands and contain iron-sulfur clusters for electron transport as revealed by their crystal structures. Fifteen years ago a third type of phylogenetically unrelated hydrogenase was discovered, which has a mononuclear iron active site and is devoid of iron-sulfur clusters. It was initially referred to as "metal free" hydrogenase, but was later renamed iron-sulfur cluster-free hydrogenase or [Fe[-hydrogenase. In this review, we introduce first the [FeFe[-hydrogenases and [NiFe[-hydrogenases, and then focus on the structure and function of the iron-sulfur cluster-free hydrogenase (Hmd) and show that this enzyme contains an iron-containing cofactor. The low-spin iron is complexed by two intrinsic CO-, one sulfur- and one or two N/O ligands and has one open coordination site, which is proposed to be the location of H(2) binding.  相似文献   

4.
High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (K?(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand substitutions in solution for guided improvement of [FeFe] catalysts.  相似文献   

5.
Recent developments in the understanding of the biosynthesis of the active site of the nitrogenase enzyme, the structure of the iron centre of [Fe]-hydrogenase and the structure and biomimetic chemistry of the [FeFe] hydrogenase H-cluster as deduced by application of X-ray spectroscopy are reviewed. The techniques central to this work include X-ray absorption spectroscopy either in the form of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and nuclear resonant vibrational spectroscopy (NRVS). Examples of the advances in the understanding of the chemistry of the system through integration of a range of spectroscopic and computational techniques with X-ray spectroscopy are highlighted. The critical role played by ab initio calculation of structural and spectroscopic properties of transition-metal compounds using density functional theory (DFT) is illustrated both by the calculation of nuclear resonance vibrational spectroscopy (NRVS) spectra and the structures and spectra of intermediates through the catalytic reactions of hydrogenase model compounds.  相似文献   

6.
Iron-iron hydrogenases ([FeFe]H2ases) are exceptional natural catalysts for the reduction of protons to dihydrogen. Future biotechnological applications based on these enzymes require a precise understanding of their structures and properties. Although the [FeFe]H2ases have been characterized by single-crystal X-ray crystallography and a range of spectroscopic techniques, ambiguities remain regarding the details of the molecular structures of the spectroscopically observed forms. We use density functional theory (DFT) computations on small-molecule computational models of the [FeFe]H2ase active site to address this problem. Specifically, a series of structural candidates are geometry optimized and their infrared (IR) spectra are simulated using the computed C-O and C-N stretching frequencies and infrared intensities. Structural assignments are made by comparing these spectra to the experimentally determined IR spectra for each form. The H red form is assigned as a mixture of an Fe(I)Fe(I) form with an open site on the distal iron center and either a Fe(I)Fe(I) form in which the distal cyanide has been protonated or a Fe(II)Fe(II) form with a bridging hydride ligand. The Hox form is assigned as a valence-localized Fe(I)Fe(II) redox level with an open site at the distal iron. The Hox(air)(ox) form is assigned as an Fe(II)Fe(II) redox level with OH(-) or OOH(-) bound to the distal iron center that may or may not have an oxygen atom bound to one of the sulfur atoms of the dithiolate linker. Comparisons of the computed IR spectra of the (12)CO and (13)CO inhibited form with the experimental IR spectra show that exogenous CO binds terminally to the distal iron center.  相似文献   

7.
Whereas the neat polymeric iron(II) compound [Fe(bbtr)(3)](ClO(4))(2), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, shows a quantitative spin transition triggered by a crystallographic phase transition centered at 107 K with a 13 K wide hysteresis, the iron(II) complexes in the diluted mixed crystals [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2), x = 0.02 and 0.1, stay predominantly in the (5)T(2) high-spin state down to cryogenic temperatures. However, the (1)A(1) low-spin state can be populated as metastable state via irradiation into the spin-allowed (5)T(2)→(5)E ligand-field transition of the high-spin species in the near-infrared. The quantum efficiency of the light-induced conversion is approximately 10% at low temperatures and decreases rapidly above 160 K. The lifetime of the light-induced low-spin state decreases from 15 days at 40 K to 30 ns at 220 K, that is, by 14 orders of magnitude. In the high-temperature regime the activation energy for the low-spin→high-spin relaxation is 1840(20) cm(-1).  相似文献   

8.
A quantitative analysis is presented for the site-selective Fe K-edge absorption spectra of Prussian Blue: Fe(4)[Fe(CN)(6)](3) x xH(2)O (x = 14-16). The site-selective spectra were recorded using high-resolution fluorescence detection of the K beta emission from a polycrystalline sample. The K beta fluorescence lines arising from the high-spin and low-spin sites are shifted in energy. Since the emission features partially overlap, fluorescence-detected absorption spectra using different emission energies represent different linear combinations of the pure high-spin and low-spin EXAFS. A numerical method was used to extract the individual site EXAFS spectra from the experimental data. The analysis yields a range of solutions. A unique solution can be obtained if homovalent model compounds are used to simulate the K beta fluorescence emission from the two Fe sites in Prussian Blue. EXAFS analysis of the range of spectra obtained in the numerical method yields almost identical interatomic distances for the different spectra while the Debye-Waller factors vary considerably. The distances obtained in the EXAFS fit correspond to the crystallographic distances.  相似文献   

9.
The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(ii) spin-crossover systems [Fe(btpa)](PF(6))(2) and [Fe(b(bdpa))](PF(6))(2) in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive infrared difference bands between 1000 and 1065 cm(-1) that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin (5)T(2) state. Vibrational relaxation is observed and characterized by the time constants 9.4 +/- 0.7 ps for [Fe(btpa)](PF(6))(2)/acetone and 12.7 +/- 0.7 ps for both [Fe(btpa)](PF(6))(2)/acetonitrile and [Fe(b(bdpa)](PF(6))(2)/acetonitrile. Vibrational analysis has been performed via DFT calculations of the low-spin and high-spin state normal modes of both compounds as well as their respective infrared absorption cross sections. The simulated infrared difference spectra are dominated by an increase of the absorption cross section upon high-spin state formation in accordance with the experimental infrared spectra.  相似文献   

10.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   

11.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

12.
Density functional theoretical models of the electronic structure of several configurational isomers and analogues of the [2Fe](H) H-cluster in [FeFe] hydrogenase were analyzed to identify distinguishing features of the canonical cofactor structure potentially relevant to catalysis. Collective analysis of geometric changes over models of oxidized and reduced [2Fe] clusters highlighted movement of the bridging carbonyl and anticorrelation of the proximal and distal Fe-C(terminal) bonds as key explanatory factors for variance over the considered models. Charge and bond order analysis suggest that as the bridging carbonyl favors the distal iron upon reduction, bonding simultaneously becomes more ionic in nature, raising the possibility of simple electrostatic stabilization as a factor in charge accumulation prior to ultimate H(2) creation and release. Frontier orbital energies show cis and trans arrangements of cyanide on the Fe-Fe core to have distinctive energies from the other models, which may be important for redox poise. Altogether, few factors qualitatively distinguish the cis- from the trans-cyano configurations, which may in fact enhance catalytic robustness under conditions leading to exchange of the bridging and terminal carbonyl ligands. However, the naturally occurring trans configuration possesses two distinct donor-metal-acceptor S-Fe-C(O) interactions, which might play a role in enforcing a low-spin ground state for the hydridic mechanism of H(2) production.  相似文献   

13.
K Endo  M Amano  H Sano 《Radioisotopes》1979,28(4):215-219
Emission M?ssbauer spectroscopic studies of 57Co-labelled [Co(phen)3]clO4)2 in host matrices [M(II)(phen)3](ClO4)2(M=Co, Fe, and Ni) indicate that the relative intensities of the anomalous species produced through the EC-decay depend on the kind of the host matrix. The largest intensity was observed with the cobalt (II) matrix, and the smallest with the iron (II) matrix. Emission spectra of 57Co-labelled [Co(2-CH3-phen)3](ClO4)2 2H2O in the matrix of [Fe(2-CH3-phen)3](ClO4)2 were also studied. The high-spin state (5T2) was predominantly observed at 4.2 K in the emission spectrum, while the low-spin state (1A1) was mainly observed in the absorption spectrum at 78 K. The results are discussed in terms of the stability of the lattice.  相似文献   

14.
Infrared data for mono-iron complexes possessing two cis-CO together with M?ssbauer data for the enzyme and a model complex support the assignment that the iron centre of the cluster-free hydrogenase Hmd is low-spin Fe(II).  相似文献   

15.
The photomagnetic properties of two series of spin-crossover solid solutions, [Fe(1-bpp)(2)](x)[Ru(terpy)(2)](1-x)(BF(4))(2) and [Fe(1-bpp)(2)](x)[Co(terpy)(2)](1-x)(BF(4))(2) (1-bpp = 2,6-bis[pyrazol-1-yl]pyridine), have been investigated. For all the materials, the evolution of the T(LIESST) value, the high-spin → low-spin relaxation parameters and the LITH loops were thoroughly studied. Interestingly in the Fe:Co series, along the photo-excitation, cobalt ions are concomitantly converted from low-spin to high-spin states with the iron centres, and also fully relax after light excitation.  相似文献   

16.
The sensitivity of iron Kβ X-ray emission spectroscopy (XES) to the nature of the bound ligands (σ-donating, π-donating, and π-accepting) has been explored. A combination of experiment and theory has been employed, with a DFT approach being utilized to elucidate ligand effects on the spectra and to assign the spectral intensity mechanisms. Knowledge of the various contributions to the spectra allows for a deeper understanding of spectral features and demonstrates the sensitivity of this method to the identity of the interacting ligands. The potential of XES for identifying intermediate species in nonheme iron enzymes is highlighted.  相似文献   

17.
The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-hydroperoxo complex [Fe(N4Py)(OOH)](2+) (1, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) are investigated in comparison to those of activated bleomycin (ABLM). Complex 1 is characterized by Raman features at 632 (Fe-O stretch) and 790 cm(-1) (O-O stretch), corresponding to a strong Fe-O bond (force constant 3.62 mdyn/A) and a weak O-O bond (3.05 mdyn/A). The UV-vis spectrum of 1 shows a broad absorption band around 550 nm that is assigned to a charge-transfer transition from the hydroperoxo to a t(2g) d orbital of Fe(III) using resonance Raman and MCD spectroscopies and density functional (DFT) calculations. Compared to low-spin [Fe(TPA)(OH(x))(OO(t)Bu)](x+)(TPA = tris(2-pyridylmethyl)amine, x = 1 or 2), an overall similar Fe-OOR bonding results for low-spin Fe(III)-alkylperoxo and -hydroperoxo species. Correspondingly, both systems show similar reactivities and undergo homolytic cleavage of the O-O bond. From the DFT calculations, this reaction is more endothermic for 1 due to the reduced stabilization of the .OH radical compared to .O(t)Bu and the absence of the hydroxo ligand that helps to stabilize the resulting Fe(IV)=O species. In contrast, ABLM has a somewhat different electronic structure where no pi donor bond between the hydroperoxo ligand and iron(III) is present [Neese, F.; Zaleski, J. M.; Loeb-Zaleski, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11703]. Possible reaction pathways for ABLM are discussed in relation to known experimental results.  相似文献   

18.
Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center.  相似文献   

19.
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown-6){Cp*Fe(η(4)-C(10)H(8))}] (K1), [K(18-crown-6){Cp*Fe(η(4)-C(14)H(10))}] (K2), [Cp*Fe(η(4)-C(10)H(8))] (1), and [Cp*Fe(η(4)-C(14)H(10))] (2) were synthesized and characterized by NMR, UV-vis, and (57)Fe M?ssbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η(4)-C(10)H(8))](-) (1(-)) and [Cp*Fe(η(4)-C(14)H(10))](-) (2(-)) and reversibly oxidized to the cations [Cp*Fe(η(6)-C(10)H(8))](+) (1(+)) and [Cp*Fe(η(6)-C(14)H(10))](+) (2(+)). Reduced orbital charges and spin densities of the naphthalene complexes 1(-/0/+) and the anthracene derivatives 2(-/0/+) were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1(-) and 2(-) are best represented by low-spin Fe(II) ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin Fe(I) ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin Fe(II) ion coordinated to a ligand radical L(?-). Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.  相似文献   

20.
The molecular and electronic structure of the Fe 6S 6 H-cluster of [FeFe] hydrogenase in relevant redox and protonation states have been investigated by DFT. The calculations have been carried out according to the broken symmetry approach and considering different environmental conditions. The large negative charge of the H-cluster leads, in a vacuum, to structures different from those observed experimentally in the protein. A better agreement with experimental data is observed for solvated complexes, suggesting that the protein environment could buffer the large negative charge of the H-cluster. The comparison of Fe 6S 6 and Fe 2S 2 DFT models shows that the presence of the Fe 4S 4 moiety does not affect appreciably the geometry of the [2Fe] H cluster. In particular, the Fe 4S 4 cluster alone cannot be invoked to explain the stabilization of the mu-CO forms observed in the enzyme (relative to all-terminal CO species). As for protonation of the hydrogen cluster, it turned out that mu-H species are always more stable than terminal hydride isomers, leading to the conclusion that specific interactions of the H-cluster with the environment, not considered in our calculations, would be necessary to reverse the stability order of mu-H and terminal hydrides. Otherwise, protonation of the metal center and H 2 evolution in the enzyme are predicted to be kinetically controlled processes. Finally, subtle modifications in the H-cluster environment can change the relative stability of key frontier orbitals, triggering electron transfer between the Fe 4S 4 and the Fe 2S 2 moieties forming the H-cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号