首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
While ultrasound has been used in many medical and industrial applications, only recently has research been done on phase transformations induced by ultrasound. This paper presents a numerical model and the predicted results of the phase transformation of a spherical nanosized droplet of perfluorocarbon in water. Such a model has applications in acoustic droplet vaporization, the generation of gas bubbles for medical imaging, therapeutic delivery and other biomedical applications.The formation of a gas phase and the subsequent bubble dynamics were studied as a function of acoustic parameters, such as frequency and amplitude, and of the physical aspects of the perfluorocarbon nanodroplets, such as chemical species, temperature, droplet size and interfacial energy. The model involves simultaneous applications of mass, energy and momentum balances to describe bubble formation and collapse, and was developed and solved numerically. It was found that, all other parameters being constant, the maximum bubble size and collapse velocity increases with increasing ultrasound amplitude, droplet size, vapor pressure and temperature. The bubble size and collapse velocity decreased with increasing surface tension and frequency. These results correlate with experimental observations of acoustic droplet vaporization.  相似文献   

2.
Acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels containing monodispersed perfluorocarbon (PFC) emulsions, respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Previously, ADV has been used to control the release of bioactive payloads from ARSs to stimulate regenerative processes. In this study, we used classical nucleation theory (CNT) to predict the nucleation pressure in emulsions of different PFC cores as well as the corresponding condensation pressure of the ADV-generated bubbles. According to CNT, the threshold bubble radii above which ADV-generated bubbles remain stable against condensation were 0.4 µm and 5.2 µm for perfluoropentane (PFP) and perfluorohexane (PFH) bubbles, respectively, while ADV-generated bubbles of any size in perfluorooctane (PFO) condense back to liquid at ambient condition. Additionally, consistent with the CNT findings, stable bubble formation from PFH emulsion was experimentally observed using confocal imaging while PFO emulsion likely underwent repeated vaporization and recondensation during ultrasound pulses. In further experimental studies, we utilized this unique feature of ADV in generating stable or transient bubbles, through tailoring the PFC core and ultrasound parameters (excitation frequency and pulse duration), for sequential delivery of two payloads from PFC emulsions in ARSs. ADV-generated stable bubbles from PFH correlated with complete release of the payload while transient ADV resulted in partial release, where the amount of payload release increased with the number of ultrasound exposure. Overall, these results can be used in developing drug delivery strategies using ARSs.  相似文献   

3.
Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size distribution of cavitation bubble population in opaque media and might be a promising tool for applications where it is desirable to tune the ultrasound parameters to control the size distribution of cavitation bubbles.  相似文献   

4.
Acoustic droplet vaporization (ADV) is the phase-transitioning of perfluorocarbon emulsions, termed phase-shift emulsions, into bubbles using focused ultrasound. ADV has been utilized in many biomedical applications. For localized drug release, phase-shift emulsions with a bioactive payload can be incorporated within a hydrogel to yield an acoustically-responsive scaffold (ARS). The dynamics of ADV and associated drug release within hydrogels are not well understood. Additionally, emulsions used in ARSs often contain high molecular weight perfluorocarbons, which is unique relative to other ADV applications. In this study, we used ultra-high-speed brightfield and fluorescence microscopy, at frame rates up to 30 million and 0.5 million frames per second, respectively, to elucidate ADV dynamics and payload release kinetics in fibrin-based ARSs containing phase-shift emulsions with three different perfluorocarbons: perfluoropentane (PFP), perfluorohexane (PFH), and perfluorooctane (PFO). At an ultrasound excitation frequency of 2.5 MHz, the maximum expansion ratio, defined as the maximum bubble diameter during ADV normalized by the initial emulsion diameter, was 4.3 ± 0.8, 4.1 ± 0.6, and 3.6 ± 0.4, for PFP, PFH, PFO emulsions, respectively. ADV yielded stable bubble formation in PFP and PFH emulsions, though the bubble growth rate post-ADV was three orders of magnitudes slower in the latter emulsion. Comparatively, ADV generated bubbles in PFO emulsions underwent repeated vaporization/recondensation or fragmentation. Different ADV-generated bubble dynamics resulted in distinct release kinetics in phase-shift emulsions carrying fluorescently-labeled payloads. The results provide physical insight enabling the modulation of bubble dynamics with ADV and hence release kinetics, which can be used for both diagnostic and therapeutic applications of ultrasound.  相似文献   

5.
Hydrodynamic cavitation for sonochemical effects   总被引:12,自引:0,他引:12  
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.  相似文献   

6.
An ultrasound standing wave field (SWF) has been utilized in many biomedical applications. Here, we demonstrate how a SWF can enhance drug release using acoustic droplet vaporization (ADV) in an acoustically-responsive scaffold (ARS). ARSs are composite fibrin hydrogels containing payload-carrying, monodispersed perfluorocarbon (PFC) emulsions and have been used to stimulate regenerative processes such as angiogenesis. Elevated amplitudes in the SWF significantly enhanced payload release from ARSs containing dextran-loaded emulsions (nominal diameter: 6 μm) compared to the -SWF condition, both at sub- and suprathreshold excitation pressures. At 2.5 MHz and 4 MPa peak rarefactional pressure, the cumulative percentage of payload released from ARSs reached 84.1 ± 5.4% and 66.1 ± 4.4% under + SWF and -SWF conditions, respectively, on day 10. A strategy for generating a SWF for an in situ ARS is also presented. For dual-payload release studies, bi-layer ARSs containing a different payload within each layer were exposed to temporally staggered ADV at 3.25 MHz (day 0) and 8.6 MHz (day 4). Sequential payload release was demonstrated using dextran payloads as well as two growth factors relevant to angiogenesis: basic fibroblast growth factor (bFGF) and platelet-derived growth factor BB (PDGF-BB). In addition, bubble growth and fibrin degradation were characterized in the ARSs under +SWF and -SWF conditions. These results highlight the utility of a SWF for modulating single and dual payload release from an ARS and can be used in future therapeutic studies.  相似文献   

7.
Short, high-intensity ultrasound pulses have the ability to achieve localized, clearly demarcated erosion in soft tissue at a tissue-fluid interface. The primary mechanism for ultrasound tissue erosion is believed to be acoustic cavitation. To monitor the cavitating bubble cloud generated at a tissue-fluid interface, an optical attenuation method was used to record the intensity loss of transmitted light through bubbles. Optical attenuation was only detected when a bubble cloud was seen using high speed imaging. The light attenuation signals correlated well with a temporally changing acoustic backscatter which is an excellent indicator for tissue erosion. This correlation provides additional evidence that the cavitating bubble cloud is essential for ultrasound tissue erosion. The bubble cloud collapse cycle and bubble dissolution time were studied using the optical attenuation signals. The collapse cycle of the bubble cloud generated by a high intensity ultrasound pulse of 4-14 micros was approximately 40-300 micros depending on the acoustic parameters. The dissolution time of the residual bubbles was tens of ms long. This study of bubble dynamics may provide further insight into previous ultrasound tissue erosion results.  相似文献   

8.
Previous studies showed that ultrasound can mechanically remove tissue in a localized, controlled manner. Moreover, enhanced acoustic backscatter is highly correlated with the erosion process. "Initiation" and "extinction" of this highly backscattering environment were studied in this paper. The relationship between initiation and erosion, variability of initiation and extinction, and effects of pulse intensity and gas saturation on time to initiation (initiation delay time) were investigated. A 788-kHz single-element transducer was used. Multiple pulses at a 3-cycle pulse duration and a 20-kHz pulse repetition frequency were applied. I(SPPA) values between 1000 and 9000 W/cm2 and gas saturation ranges of 24%-28%, 39%-49%, and 77%-81% were tested. Results show the following: (1) without initiation, erosion was never observed; (2) initiation and extinction of the highly backscattering environment were stochastic in nature and dependent on acoustic parameters; (3) initiation delay times were shorter with higher intensity and higher gas saturation (e.g., the mean initiation delay time was 66.9 s at I(SPPA) of 4000 W/cm2 and 3.6 ms at I(SPPA) of 9000 W/cm2); and (4) once initiated by high-intensity pulses, the highly backscattering environment and erosion can be sustained using a significantly lower intensity than that required to initiate the process.  相似文献   

9.
The radial and translational oscillations of a single cavitation bubble in a standing ultrasound wave were investigated experimentally at various driving acoustic pressures for aqueous ethanol solutions with different bulk molar fractions of ethanol range of 0-1.3 × 10(-3). The results show that both the lower and upper stability thresholds of the acoustic driving pressure decreased as the concentration of ethanol was increased. At a given driving pressure the ambient and maximum bubble sizes increased with increasing ethanol concentration. In addition, as the ethanol was increased, the sonoluminescence intensity decreased while the bubble dynamics remained largely unchanged. The translational oscillation of the levitated bubble, however, became increasingly violent with increasing ethanol concentration. The displacement of the bubble reached 0.7 mm at the highest concentration studied (1.3 × 10(-3)) and the maximum bubble size was found to change as the bubble jumped up and down. This bubble translation may be responsible for the decrease of the acoustic driving pressure threshold and suggests that repetitive injection of ethanol molecules into the bubble takes place. These results may account for the different sensitivities of single bubble and multi-bubble sonoluminescence to the presence of volatile additives.  相似文献   

10.
The present study mainly examined the effects of the volumetric concentration of nanobubbles (ultrafine bubbles) on the intensity of sonoluminescence (SL). The addition of nanobubbles at high acoustic amplitude enhanced the SL intensity for various bubble concentrations in comparison with that in pure water. This probably means that the resulting high amplitude is over the Blake threshold, and accordingly nanobubbles expand to some extent, leading to higher SL intensity. Therefore, nanobubbles have the potential to provide nucleation sites for sonochemistry. The influence of bubble size on the intensity of SL was also evaluated.  相似文献   

11.
Acoustic generation of bubbles in excised canine urinary bladders   总被引:1,自引:0,他引:1  
A high-intensity, 555-kHz acoustic field was used to generate bubbles within urinary bladders excised from dogs. Following the exposure, bubbles were visualized on a diagnostic ultrasound scanner with a 5-MHz in-line mechanical sector scanhead. Scattering of the high-intensity ultrasound by the bubbles was also observed during the exposure as high-amplitude scan lines. The bladders used had been surgically removed after tying off the ureters and urethra to prevent urine loss and exposure to external contaminants. Each bladder was sealed in a plastic bag filled with a degassed saline solution. The bladder was centered in a sealed degassed water path at the common focus of a 7-cm-diam transducer and a 10-cm-diam brass reflector. The 555-kHz transducer and reflector were both focused at 10 cm and were aligned coaxially. Using various acoustic pressure amplitudes, two, 10-s low-frequency exposures, separated by approximately 30 s, occurred at approximately 2-min intervals. Experiments on a single bladder lasted as long as 45 min. The sizes of the largest bubbles, which were easily imaged, were estimated from rise velocity measurements as 50-70 microns in radius, and pressure amplitudes used to generate those large bubbles were estimated as 10-20 bars. The detection of smaller bubbles was limited by the inability to clearly distinguish bubble echoes from artifacts caused by the reverberant field within the bladder. Visual inspection of the exterior and interior bladder wall showed no significant discoloration within the high intensity beam path.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2037-2043
The decreasing effect of sonoluminescence (SL) in water at high acoustic powers was investigated in relation to bubble dynamics and acoustic emission spectra. The intensity of SL was measured in the power range of 1–18 W at 83.8 kHz for open-end (free liquid surface and film-covered surface) and fixed-end boundaries of sound fields. The power dependence of the SL intensity showed a maximum and then decrease to zero for all the boundaries. Similar results were obtained for sonochemiluminescence in luminol solution. The power dependence of the SL intensity was strongly correlated with the bubble dynamics captured by high-speed photography at 64 k fps. In the low-power range where the SL intensity increases, bubble streamers were observed and the population of streaming bubbles increased with the power. At powers after SL maximum occurred, bubble clusters came into existence. Upon complete SL reduction, only bubble clusters were observed. The subharmonic in the acoustic emission spectra increased markedly in the region where bubble clusters were observed. Nonspherical oscillations of clustering bubbles may make a major contribution to the subharmonic.  相似文献   

14.
Intensity difference limens (DLs) were measured in users of the Nucleus 22 and Clarion v1.2 cochlear implants and in normal-hearing listeners to better understand mechanisms of intensity discrimination in electric and acoustic hearing and to evaluate the possible role of neural adaptation. Intensity DLs were measured for three modes of presentation: gated (intensity increments gated synchronously with the pedestal), fringe (intensity increments delayed 250 or 650 ms relative to the onset of the pedestal), and continuous (intensity increments occur in the presence of a pedestal that is played throughout the experimental run). Stimuli for cochlear-implant listeners were trains of biphasic pulses; stimuli for normal-hearing listeners were a 1-kHz tone and a wideband noise. Clarion cochlear-implant listeners showed level-dependent effects of presentation mode. At low pedestal levels, gated thresholds were generally similar to thresholds obtained in the fringe and continuous conditions. At higher pedestal levels, however, the fringe and continuous conditions produced smaller intensity DLs than the gated condition, similar to the gated-continuous difference in intensity DLs observed in acoustic hearing. Nucleus cochlear-implant listeners did not show consistent threshold differences for the gated and fringe conditions, and were not tested in the continuous condition. It is not clear why a difference between gated and fringe thresholds occurred for the Clarion but not the Nucleus subjects. Normal-hearing listeners showed improved thresholds for the continuous condition relative to the gated condition, but the effect was larger for the 1-kHz tonal carrier than for the noise carrier. Findings suggest that adaptation occurring central to the inner hair cell synapse mediates the gated-continuous difference observed in Clarion cochlear-implant listeners and may also contribute to the gated-continuous difference in acoustic hearing.  相似文献   

15.
Knowledge of the acoustic cavitation cloud would be useful for improving ultrasound reactor design. Among the characterisation techniques, few are adapted to bubble investigations in an intense ultrasound field. Some problems raised by these measurements result from interactions between the acoustic pressure wave and the measuring light wave. This paper reports the implementation of the laser diffraction technique to determine the size and volume concentration of bubbles generated by a dipping horn operating at 20 kHz. Measurements were performed with a Malvern 2600 instrument. The size distribution, deduced from the diffraction pattern scattered by the bubble cloud crossed by a laser beam, is disturbed by the acoustic pressure wave involving deviation of a light beam at low diffusion angles (acousto‐optic effect). A bubble size correction procedure based on the subtraction of the light energy due to the ultrasound wave is described. The size measurements, and thus the correction procedure, were validated by a second laser technique based on a different measuring principle: phase Doppler interferometry. The measurement reliability was further confirmed by an original application of laser diffraction based on measurements performed just after sonication. These three methods lead to a mean bubble size (Sauter mean diameter) of about 10 μm at a high ultrasound power input. Concerning the void fraction, only measurements achieved after sonication and by laser diffraction predict a correct estimation of this parameter.  相似文献   

16.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

17.
New method has been proposed for the estimation of size and number density distribution of oscillating bubbles in a sonochemical reactor using acoustic emission spectra measurements. Bubble size distribution has been determined using Minnaert's equation [M. Minnaert, On musical air bubbles and sound of running water, Philanthr. Mag. 16 (1933) 235], i.e., size of oscillating bubble is inversely related to the frequency of its volume oscillations. Decomposition of the pressure signal measured by the hydrophone in frequency domain of FFT spectrum and then inverse FFT reconstruction of the signal at each frequency level has been carried out to get the information about each of the bubble/cavity oscillation event. The number mean radius of the bubble size is calculated to be in the range of 50-80mum and it was not found to vary much with the spatial distribution of acoustic field strength of the ultrasound processor used in the work. However, the number density of the oscillating bubbles and the nature of the distribution were found to vary in different horizontal planes away from the driving transducer surface in the ultrasonic bath. A separate set of experiments on erosion assessment studies were carried out using a thin aluminium foil, revealing a phenomena of active region of oscillating bubbles at antinodal points of the stationary waves, identical to the information provided by the acoustic emission spectra at the same location in the ultrasonic bath.  相似文献   

18.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

19.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

20.
Shock-wave model of acoustic cavitation   总被引:1,自引:0,他引:1  
Shock-wave model of liquid cavitation due to an acoustic wave was developed, showing how the primary energy of an acoustic radiator is absorbed in the cavitation region owing to the formation of spherical shock-waves inside each gas bubble. The model is based on the concept of a hypothetical spatial wave moving through the cavitation region. It permits using the classical system of Rankine-Hugoniot equations to calculate the total energy absorbed in the cavitation region. Additionally, the model makes it possible to explain some newly discovered properties of acoustic cavitation that occur at extremely high oscillatory velocities of the radiators, at which the mode of bubble oscillation changes and the bubble behavior approaches that of an empty Rayleigh cavity. Experimental verification of the proposed model was conducted using an acoustic calorimeter with a set of barbell horns. The maximum amplitude of the oscillatory velocity of the horns' radiating surfaces was 17 m/s. Static pressure in the calorimeter was varied in the range from 1 to 5 bars. The experimental data and the results of the calculations according to the proposed model were in good agreement. Simple algebraic expressions that follow from the model can be used for engineering calculations of the energy parameters of the ultrasonic radiators used in sonochemical reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号