首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.  相似文献   

2.
Ultrathin rhodium films with a thickness ranging from 1 to a few monolayers were deposited on a single-crystal Ru(0001) surface in order to investigate the oxidation behavior of ultrathin epitaxial films on a dissimilar substrate. It is found that rhodium grows on Ru(0001) initially layer by layer, adapting the in-plane lattice parameters of Ru(0001). When exposing Rh films to oxygen environment (approximately 4.8 x 10(6) L O2 exposure) at 660 K, 2-4 ML Rh films form a surface oxide composed of (9 x 9) O-Rh-O trilayers. Quite in contrast, oxidation of the 1 ML RhRu(0001) film leads to a poorly ordered oxide with a rutile structure reminiscent of RuO2(110) on Ru(0001). The oxidized 1 ML RhRu(0001) film contains much more oxygen than the oxidized thicker Rh films. Lower temperatures (535 K) and high doses of oxygen lead to a (1 x 1)-O overlayer on the 1 ML RhRu(0001) surface, whose atomic geometry resembles closely that of the (1 x 1)-O phase on clean Ru(0001).  相似文献   

3.
The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.  相似文献   

4.
The XPS (X-ray photoelectron spectroscopy) study of nickel oxide nanolayers obtained by magnetron sputtering of the metal and its subsequent oxidation in air at different temperatures (400°C and 1000°C) was performed. Silicon(100) was used as a substrate. Surface of the initial Ni/Si structure was shown to contain not only Ni metal, but also the NiO oxide. Annealing at 400°C results in a complete oxidation of the metal film. At a high-temperature annealing (1000°C), nickel interacts both with oxygen and silicon substrate to form NiSi silicide and a composite Ni-Si-O phase in transition layer. Electronconductivity of NiO films is determined by intercrystallite barriers. Activation energies of film electroconductivity in model gases (O2, Ar, H2) were found.  相似文献   

5.
The possibility of forming niobium oxynitride through the nitridation of niobium oxide films in molecular nitrogen by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited via sputtering onto Si(100) wafers covered with a thermally grown SiO2 layer 100 nm thick. These as-deposited films exhibited distinct texture effects. They were processed in two steps using an RTP system. The as-deposited niobium films were first oxidized under an oxygen atmosphere at 450 °C for various periods of time and subsequently nitridated under a nitrogen atmosphere at temperatures ranging from 600 to 1000 °C for 1 min. Investigations of the oxidized films showed that samples where the start of niobium pentoxide formation was detected at the surface and the film bulk still consisted of a substoichiometric NbOx phase exhibited distinctly lower surface roughness and microcrack densities than samples where complete oxidation of the film to Nb2O5 had occurred. The niobium oxide phases formed at the Nb/substrate interface also showed distinct texture. Zones of niobium oxide phases like NbO and NbO2, which did not exist in the initial oxidized films, were formed during the nitridation. This is attributed to a “snow-plough effect” produced by the diffusion of nitrogen into the film, which pushes the oxygen deeper into the film bulk. These oxide phases, in particular the NbO2 zone, act as barriers to the in-diffusion of nitrogen and also inhibit the outdiffusion of oxygen from the SiO2 substrate layer. Nitridation of the partially oxidized niobium films in molecular nitrogen leads to the formation of various niobium oxide and nitride phases, but no indication of niobium oxynitride formation was found. Figure Schematic representation of the phase distribution in 200 nm Nb film on SiO2/Si substrate after two steps annealing using an RTP system. The plot below represents the SIMS depth profiles of the nitridated sample with the phase assignment  相似文献   

6.
Room-temperature Ba deposition on an oxygen-terminated theta-Al(2)O(3)/NiAl(100) ultrathin film substrate under ultrahigh vacuum (UHV) conditions is studied using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In addition, Ba oxidation by the ions of the alumina substrate at 300 K < T < 1200 K in the absence of a gas-phase oxidizing agent is investigated. Our results indicate that at room temperature Ba grows in a layer-by-layer fashion for the first two layers, and Ba is partially oxidized. Annealing at T < 700 K results in further oxidation of the Ba species, whereas annealing at higher temperatures leads to loss of Ba from the surface via desorption and subsurface diffusion.  相似文献   

7.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

8.
Using high-resolution soft X-ray photoemission, Al 2p, we have been able to quantify the relative populations of tetrahedrally (Al(tet)) and octahedrally (Al(oct)) coordinated Al(3+) in three distinct phases of nanoscale aluminum oxide films on NiAl(110). We have hence determined the bulk alumina phases that the nanoscale films most resemble. Adsorption of oxygen at room temperature produces a layer which predominately (90%) contains Al(tet) and is analogous to the amorphous bulk phase of alumina. Annealing this layer results in an Al enrichment of the oxide layer, through the diffusion of metal from the substrate, and an increase in the relative amount of Al(oct), producing a gamma-alumina-like layer with a relative Al(oct)/Al(tet) occupancy of 28 +/- 3%/72 +/- 3%. Oxygen adsorption at 823 K also produces a gamma-like phase, with a relative Al(oct)/Al(tet) occupancy of 27 +/- 3%/73 +/- 3%, although this layer is thicker than that formed at room temperature. Both oxidation methods produce gamma-alumina layers that display poor translational order. However, these poorly ordered layers have a relative Al(oct)/Al(tet) occupation similar to that of well-ordered oxide films produced using different oxidation conditions in previous studies. Both gamma layers undergo partial decomposition upon annealing to 1273 K, producing an alpha-alumina-like oxide, which contains only Al(oct), and is highly deficient in Al. There are significant oxide-free areas within the alpha-alumina oxide layer, which is characteristic of crystallite formation. Repeated cycles of oxidation and annealing to 1273 K do not produce a homogeneous film, but they do make the alpha-like oxide more Al rich.  相似文献   

9.
Nickel is used as catalyst in alkaline electrochemical systems like batteries, electrolyzers and fuel cells. Adsorption experiments from potassium on a thin NiO(100) epitactic layer on an Ag(100)-single crystal substrate showed that potassium intrudes in that NiO-layer where at a temperature of 350 K a mixed oxide phase was built. At 120 K metallic potassium was adsorbed on the NiO surface. A symmetric K2p-peak showed that potassium is in the oxidized state compared to the asymmetric peak of metallic potassium. No potassium diffused into metallic nickel at a temperature of 450 K. The electrochemically oxidized surface layer consisted of nickel, oxygen and also potassium. After heating and ion-etching no more potassium was detectable by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). But it was visible again after oxidizing and heating of the sample to 670 K. Therefore, the potassium must have been in the bulk. It diffused to the surface if there was oxygen at sufficiently high temperatures. Further heating reduces the surface and the potassium also disappeared. Received: 6 September 1998 / Revised: 1 April 1999 / Accepted: 16 April 1999  相似文献   

10.
Equilibrium of Cr atoms between the surface layer and bulk of a binary alloy was analyzed. The Gibbs adsorption equation was used to obtain the dependence of the adsorption activity of atoms in the surface layer on their activity in the bulk. An approximate thermodynamic method was used to calculate the adsorption of Fe (Ni) and Cr atoms in the surface layers of Fe-Cr and Ni-Cr alloys. According to calculations, there was negative adsorption, X Cr ≪ 1, in the surface layer of the alloys caused by a large difference between the Gibbs surface energies of Cr and Fe (or Ni). The negative adsorption of Cr shifted chemical reaction equilibria on the alloy-oxide film boundary both in oxidation in air and in anodic passivation, 3FeO (NiO) + 2Cr = Cr2O3 + 3Fe(Ni), toward oxide film enrichment in the FeO (or NiO) oxide. A unified method for calculating the composition of oxide films on alloys was used for both processes. The method was based on the use of the initial data on the Gibbs surface energy of metals constituting alloys. The calculated oxide film compositions were close to the experimental X-ray photoelectron spectroscopy data.  相似文献   

11.
Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ~0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ~0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed.  相似文献   

12.
Methanol adsorption and reaction have been studied on Rh-deposited cerium oxide thin films under UHV conditions using temperature-programmed desorption and synchrotron soft X-ray photoelectron spectroscopy. The methanol behavior was examined as a function of the Ce oxidation state, methanol exposure, and Rh particle size and coverage. When Rh nanoparticles were deposited on the ceria films, methanol decomposed on Rh to CO and H below 200 K. H atoms recombined and desorbed between 200 and 300 K. CO evolved from Rh deposited on fully oxidized ceria between 400 and 500 K. However, on reduced ceria films, the CO on Rh further decomposed to atomic C. Methanol adsorbed on the ceria films deprotonated to form methoxy as the only intermediate on the surface. This methoxy decomposed and desorbed as CO and H2 at higher temperatures regardless of the ceria oxidation state. Compared with the methanol reaction on Rh-free ceria thin films, formaldehyde formation from methoxy was completely suppressed after Rh deposition. Our results indicate that Rh can promote the decomposition of methoxy adsorbed on the ceria and that decomposition of methoxy intermediates occurred at the metal/oxide interfaces. On the other hand, the reduced ceria can promote total methanol decomposition on Rh.  相似文献   

13.
An in situ XPS study of oxidation-reduction processes on three perovskite oxide electrode surfaces was carried out by incorporating the materials in an electrochemical cell mounted on a heated sample stage in an ultrahigh vacuum (UHV) chamber. Electrodes made of powdered LaCr(1-x)Ni(x)O(3-delta) (x = 0.4, 1) showed changes in the XPS features of all elements upon redox cycling between formal Ni3+ and Ni2+ oxidation stoichiometries, indicating the delocalized nature of the electronic states involved and strong mixing of O 2p to Ni 3d levels to form band states. The surface also showed changes in adsorption capacity for CO2 upon reduction as a result of increased nucleophilicity of surface oxygen. Another perovskite oxide, La(0.5)Sr(0.5)CoO(3-delta), laser deposited as highly oriented thin films on (100) oriented yttria-stabilized zirconia (YSZ), also showed evidence of both local and nonlocal effects in the XPS features upon redox cycling. In contrast to LaCr(1-x)Ni(x)O(3-delta), redox cycling mainly affected the XPS features of cobalt with little effect on oxygen. This signifies reduced participation of O 2p states in the conduction band of this material. Small changes in surface cation stoichiometry in this film were observed and attributed to mobility of the A-site Sr dopant under polarization.  相似文献   

14.
脉冲激光沉积纳米NiO薄膜   总被引:3,自引:0,他引:3  
Na Cl型 Ni O是一种 p型半导体 ,广泛用于传感器、催化剂、涂料、磁性材料及电极材料等领域[1~ 5] .最近 ,Poizot等 [6] 又报道了 Ni O可作为锂离子电池的阳极材料 ,使 Ni O成为又一新的研究热点 .纳米 Ni O粉末的制备方法有多种 ,主要包括化学沉淀法和沉淀转换法 ,Ni O薄膜的制备主要采用磁控溅射、化学气相沉积和电沉积等方法 [7~ 12 ] .脉冲激光沉积法具有操作简单和成膜纯净等优点 ,因此是制备薄膜的重要方法之一 .本文采用脉冲激光沉积 (PLD)法在氧气氛中使用金属镍作为靶材料 ,不锈钢作为基片 ,对 Ni O薄膜的制备进行了研究…  相似文献   

15.
We describe the preparation and optical–electrical characterization of thin electrochromic layers based on nickel oxide (NiOx). These layers were deposited by reactive radiofrequency (r.f.) sputtering from nickel or nickel oxide targets, maintaining the r.f. power and varying the oxygen flow in a gas mixture of Ar and O2 from 5% up to 30%. The Ni/O ratio in the deposited thin films was determined by Rutherford backscattering spectroscopy (RBS) and the microstructure was investigated by x‐ray diffraction. The deposition rate was found to be strongly dependent on the type of target used. The electrochromic behaviour in aqueous alkaline electrolyte (0.1 N KOH solution) was investigated by electrochemical cyclization. Samples deposited by the NiO target exhibited the lowest N/O ratio (0.5) and the highest value of intercalated charge (~4.9 × 10?2 mC cm?2 nm?1). Among the same samples the highest value of the intercalated charge was found for those deposited at low oxygen flow, but these samples exhibit the smallest reversible changes in optical absorption in the wavelength range 330–1200 nm. Samples deposited by the nickel target do not exhibit significant variations in the value of the exchanged charge; the measured Ni/O ratio indicates a stoichiometry closer to NiO. We also observed the switching behaviour by analysing the films in cyclic time mode at a fixed wavelength. The commutation response time is estimated by measurement under the application of a step waveform potential. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The reaction of complete methane oxidation over deposited catalysts (NiO/ZrO2 and NiO/YSZ) and binary oxides NiO_ZrO2 produced by co-precipitation, by the sol gel method, and using a bio-template (NiO content in the samples, 10.1 mol %) is investigated. It is shown that binary oxides cause methane oxidation at lower temperatures than their deposited analogue: the temperature of methane half-transformation is 470, 500, and 520°C for binary oxides, while T 50 = 570°C for NiO/ZrO2. Major factors affecting the activity of binary oxides in the methane oxidation reaction are determined: the dispersion of the active phase (NiO) and the availability of the second component with high mobility of the lattice oxygen.  相似文献   

18.
CO在Ni/Al2O3催化剂上的歧化和氧化反应   总被引:7,自引:2,他引:7  
Pena等[1]认为CO的歧化反应是甲烷部分氧化制合成气反应中积碳的来源之一.Claridge等[2]在研究不同温度下负载型Ni催化剂对纯甲烷和纯CO的碳形成的催化作用时发现,在不同温度下催化剂对甲烷分解和CO歧化反应的催化程度不同,在甲烷部分氧化的...  相似文献   

19.
Ba deposition on a theta-Al(2)O(3)/NiAl(100) substrate and its oxidation with gas-phase O(2) at various surface temperatures are investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD) techniques. Oxidation of metallic Ba by gas-phase O(2) at 800 K results in the growth of 2D and 3D BaO surface domains. Saturation of a metallic Ba layer deposited on theta-Al(2)O(3)/NiAl(100) with O(2)(g) at 300 K reveals the formation of BaO(2)-like surface states. These metastable peroxide (O(2)(2-)) states are converted to regular oxide (O(2-)) states at higher temperatures (800 K). In terms of thermal stability, BaO surface layers (theta(Ba) < 5 ML) that are formed by O(2)(g) assisted oxidation on the theta-Al(2)O(3)/NiAl(100) substrate are significantly more stable (with a desorption/decomposition temperature of c.a. 1050 K) than the thick (2 < theta(Ba) < 10 ML) metallic/partially oxidized Ba layers prepared in the absence of gas-phase O(2), whose multilayer desorption features appear as low as 700 K.  相似文献   

20.
The competitive interaction between acetone and water for surface sites on TiO2(110) was examined using temperature programmed desorption (TPD). Two surface pretreatment methods were employed, one involving vacuum reduction of the surface by annealing at 850 K in ultrahigh vacuum (UHV) and another involving surface oxidation with molecular oxygen. In the former case, the surface possessed about 7% oxygen vacancy sites, and in the latter, reactive oxygen species (adatoms and molecules) were deposited on the surface as a result of oxidative filling of vacancy sites. On the 7% oxygen vacancy surface, excess water displaced all but about 20% of a saturated d6-acetone first layer to physisorbed desorption states, whereas about 40% of the first layer d6-acetone was stabilized on the oxidized surface against displacement by water through a reaction between oxygen and d6-acetone. The displacement of acetone on both surfaces is explained in terms of the relative desorption energies of each molecule on the clean surface and the role of intermolecular repulsions in shifting the respective desorption features to lower temperatures with increasing coverage. Although first layer water desorbs from TiO2(110) at slightly lower temperature (275 K) than submonolayer coverages of d6-acetone (340 K), intermolecular repulsions between d6-acetone molecules shift its leading edge for desorption to 170 K as the first layer is saturated. In contrast, the desorption leading edge for first layer water (with or without coadsorbed d6-acetone) shifted to no lower than 210 K as a function of increasing coverage. This small difference in the onsets for d6-acetone and water desorption resulted in the majority of d6-acetone being compressed into islands by water and displaced from the first layer at a lower temperature than that observed in the absence of coadsorbed water. On the oxidized surface, the species resulting from reaction of d6-acetone and oxygen was not influence by increasing water coverages. This species was stable up to 375 K (well past the first layer water TPD feature) where it decomposed mostly back to d6-acetone and atomic oxygen. These results are discussed in terms of the influence of water in inhibiting acetone photo-oxidation on TiO2 surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号