首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal reactions between [RuCl2(diene)]n (diene = 2,5-norbornadiene, nbd; 1,5-cyclooctadiene, cod) with an excess of N,N,N',N'-tetramethylethylene diamine (tmeda) afforded derivatives [RuCl2(diene)(tmeda)] (diene = nbd, 1; cod, 2) as a mixture of cis and trans isomers. When thermolysis was performed under H2 mixtures of hydride species [RuCl(H)(diene)(tmeda)] (diene = nbd, 3; cod, 4) and the bis-tmeda adduct trans-[RuCl2(tmeda)2] (5) were obtained in different ratios depending upon the reaction conditions and reaction times. Heating polymeric Ru(II) precursors in toluene in the presence of a 5-fold excess of the bulkier N,N,N',N'-tetraethylethylene diamine (teeda) resulted in a rare diamine dealkylation process with formation of trans-[RuCl2(nbd)(Et2NCH2CH2NHEt)] (6) and trans-[RuCl2(cod)(EtHNCH2CH2NHEt)] (7) in high yields. The presence of N-H functionalities in the coordinated diamine ligands of 6 and 7 was unambiguously established by single-crystal X-ray diffraction studies. The dealkylation process of the teeda ligand seems to proceed intramolecularly as shown by solution NMR studies performed with the soluble Ru(II) precursors trans-[RuCl2(amine)2(diene)] (diene = nbd, amine = morpholine, 9; diene = cod, amine = Et2NH, 10). The above complexes [RuCl2(diene)(diamine)] have been tested as precatalysts in the hydrogenation of ketones both for transfer as well as direct hydrogenation, the latter route being the most effective.  相似文献   

2.
[reaction: see text] 1,3-Dimesitylimidazol-2-ylidene ruthenium benzylidene catalyst (RuCl2(=C(H)Ph)(PCy3)(IMes)) has been successfully employed in ring-closing metathesis reactions of acyclic diene sulfides, disulfides, and dithianes and in self-cross metathesis reactions of ene-sulfides, thioethers, and thiols.  相似文献   

3.
Reaction of [RuCl(3)(dppb)H(2)O] (dppb=1,4 bis(diphenylphospine)butane) with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phehyl (H2Bz4Ph) derivatives gave [RuCl(dppb)(H2Bz4DH)]Cl (1), [RuCl(dppb)(H2Bz4M)]Cl (2) and [RuCl(dppb)(H2Bz4Ph)]Cl (3). The cytotoxic activity of the studied compounds was tested against the MCF-7, TK-10 and UACC-62 human tumor cell lines. The precursor [RuCl(3)(dppb)H(2)O] exhibits cytocidal activity against the tree cell lines. H2BzDH, H2Bz4M, and [RuCl(dppb)(H2Bz4M)]Cl (2) show a selective cytocidal effect against the UACC-62 cell line which makes them the most promising compounds.  相似文献   

4.
New ruthenium(II) complexes having a tetradentate ligand such as tris(2-pyridylmethyl)amine (TPA), tris[2-(5-methoxycarbonyl)pyridylmethyl]amine [5-(MeOCO)3-TPA], tris(2-quinolylmethyl)amine (TQA), or bis(2-pyridylmethyl)glycinate (BPG) have been prepared. The reaction of the ligand with [RuCl2(Me2SO)4] resulted in a mixture of trans and cis isomers of the chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes containing a TPA or a BPG, whereas a trans(Cl,N(amino)) isomer was selectively obtained for 5-(MeOCO)3-TPA and TQA. The trans and cis isomers of the [RuCl(TPA)(Me2SO)]+ complex were easily separated by fractional recrystallization. The molecular structures of trans- and cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complexes and the trans(Cl,N(amino))-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]+ complex have been determined by X-ray structural analyses. The reaction of TPA with [RuCl2(PhCN)4] gave a single isomer of the chloro(benzonitrile)ruthenium(II) complex, whereas the bis(benzonitrile)ruthenium(II) complex was obtained with BPG. The cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complex is thermodynamically much less stable than the trans isomer and isomerizes in dimethyl sulfoxide at 65-100 degrees C. Oxygenation of alkanes catalyzed by these ruthenium(II) complexes has been examined. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes with TPA and its derivatives using m-chloroperbenzoic acid as a cooxidant showed high catalytic ability. Adamantane was efficiently and selectively oxidized to give 1-adamantanol up to 88%. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complex with 5-(MeOCO)3-TPA was found to be the most active catalyst among the complexes examined.  相似文献   

5.
Three novel ruthenium‐catalyzed cyclizations of enynes were developed. In each cyclization, a ruthenacyclopentene derived from enyne and Cp*RuCl(cod) is a common intermediate. When an enyne having an alkyl, an ester, or a formyl group on an alkyne was reacted with Cp*RuCl(cod) under ethylene gas, ethylene was inserted into the ruthenium‐sp2 carbon bond of ruthenacyclopentene to afford ruthenacycloheptene, and β‐hydrogen elimination followed by reductive elimination occurred to give a cyclic compound having a 1,3‐diene moiety. When an acyl group was placed on the alkyne, the carbonyl oxygen coordinated to the ruthenium metal of ruthenacyclopentene to produce a ruthenium carbene complex, which reacted with ethylene to give a cyclic compound having a cyclopropane ring on the substituent. On the other hand, when the substituent on the alkyne was pent‐4‐enyl, insertion of an alkene part into ruthenacyclopentene followed by reductive elimination gave a tricyclic compound by a ruthenium‐catalyzed [2 + 2 + 2] cyclization of diene and an alkyne. DOI 10.1002/tcr.201100003  相似文献   

6.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

7.
Treatment of complex trans-[RuCl(2)(eta(2)-C(2)H(4))[kappa(3)-N,N,N-(R,R)-Ph-pybox]] [(R,R)-Ph-pybox = 2,6-bis[4'-(R)-phenyloxazolin-2'-yl]pyridine] with phosphines or phosphites in dichloromethane at 50 degrees C leads to the formation of novel ruthenium(II)-pybox complexes trans-[RuCl(2)(L)[kappa(3)-N,N,N-(R,R)-Ph-pybox]] [L = PPh(3) (1 a), PPh(2)Me (2 a), PPh(2)(C(3)H(5)) (3 a), PPh(2)(C(4)H(7)) (4 a), PMe(3) (5 a), PiPr(3) (6 a), P(OMe)(3) (7 a) and P(OPh)(3) (8 a)]. Likewise, reaction of trans-[RuCl(2)(eta(2)-C(2)H(4))[kappa(3)-N,N,N-(R,R)-Ph-pybox]] with PPh(3) or PiPr(3) in refluxing methanol leads to the complexes cis-[RuCl(2)(L)(kappa(3)-N,N,N-(R,R)-Ph-pybox] [L = PPh(3) (1 b), PiPr(3) (6 b)]. No trans-cis isomerisation of complexes 1 a-8 a has been observed. Complexes 1 a-8 a, 1 b, 6 b together with the analogous trans-[RuCl(2)[P(OMe)(3)][kappa(3)-N,N,N-(S,S)-iPr-pybox]] (10 a) and the previously reported trans- and cis-[RuCl(2)(PPh(3))[kappa(3)-N,N,N-(S,S)-iPr-pybox]] (9 a and 9 b, respectively) are active catalysts for the transfer hydrogenation of acetophenone in 2-propanol in the presence of NaOH (ketone/cat/NaOH 500:1:6). cis-Ph-pybox derivatives are the most active catalysts. In particular, cis complexes 1 b and 6 b led to almost quantitative conversions in less than 5 min with a high enantioselectivity (up to 95 %). A variety of aromatic ketones have also been reduced to the corresponding secondary alcohols with very high TOF and ee up to 94 %. The overall catalytic performance seems to be a subtle combination of the steric and/or electronic properties both the phosphines and the ketones. A high TOF (27 300 h(-1)) and excellent ee (94 %) have been found for the reduction of 3-bromoacetophenone with catalyst 6 b. Reductions of alkyl ketones also proceed with high and rapid conversions but low enantioselectivities are achieved.  相似文献   

8.
A basic aqueous solution of maleimide or phthalimide reacts with [Pt(diene)Cl2] complexes to give complexes of the type [Pt(diene)(imidate)2] (diene = 1,5-cyclooctadiene, dicyclopentadiene and norbornadiene). The spectra and the reactions of these complexes give information about the nature of the PtN σ-bond.  相似文献   

9.
The Ru(II) complex fac-[RuCl(dmso-S)(3)(dmso-O)(2)][PF(6)] (P2) was found to be an excellent precursor for the facile preparation in high yield of half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N)(2)][PF(6)] (e.g. (N)(2) = 1,2-diaminoethane (en, 4), trans-1,2-diaminocyclohexane (dach, 5), or 2 NH(3) (6)). Neutral half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N-O)] where N-O is an anionic chelating ligand (e.g. N-O = picolinate (pic, 7)) are best prepared from the universal Ru(II)-dmso precursor cis-[RuCl(2)(dmso)(4)] (P1). These complexes, that were fully characterized in solution and in the solid state, are structurally similar to the anticancer organometallic compounds [Ru(η(6)-arene)(chel)Cl][PF(6)](n) but, in place of a face-capping arene, have the fac-Ru(dmso-S)(3) fragment. In contrast to what observed for the corresponding arene compounds, that rapidly hydrolyze the Cl ligand upon dissolution in water, compounds 4-6 are very stable and inert in aqueous solution. Probably their inertness is the reason why they showed no significant cytotoxicity against the MDA-MB-231 cancer cell line.  相似文献   

10.
The rhodium(III) complex mer,cis-[RhCl3(PPh2py-P,N)(PPh2py-P)] (1) (PPh2py = diphenyl (2-pyridyl)phosphine) has been prepared from RhCl3 x 3H2O and PPh2py and converted to the trans,cis-[RhCl2(PPh2py-P,N)2]PF6 (2) in acetone solution by treatment with Ag+ and PF6(-). Ruthenium(III) and ruthenium(II) compounds with PPh2py, mer,cis-[RuCl3(PPh2py-P,N)(PPh2py-P)] (3) and mer-[RuCl(PPh2py-P,N)2(PPh2py-P)]Cl (5) have been obtained from DMSO precursor complexes. In a chloroform solution, complex (5) isomerizes to fac-[RuCl(PPh2py-P,N)2(PPh2py-P)]Cl (fac-5). All compounds have been characterized by MS, UV-vis, IR, and 1H and 31P{1H} NMR spectroscopy, and the Ru(III) compound has been characterized by EPR spectroscopy as well. The crystal structures of 1, 2, 3, and fac-5 have been determined. In all compounds under investigation, at least one pyridylphosphine acts as a chelate ligand. The 31P chemical shifts for chelating PPh2py-P,N depend on the Ru-P bond lengths.  相似文献   

11.
Ligand substitution of RuCl2[P(C6H5)3]3 and Cp*RuCl(isoprene) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) complexes with hydroxymethylphosphines was investigated to develop new catalyst systems for CO2 hydrogenation. A reaction of P(C6H5)2CH2OH with RuCl2[P(C6H5)3]3 in CH2Cl2 gave Ru(H)Cl(CO)[P(C6H5)2CH2OH]3 (1), which was characterized by NMR spectroscopy and X-ray crystallographic analysis. An isotope labeling experiment using P(C6H5)213CH2OH indicated that the carbonyl moiety in complex 1 originated from formaldehyde formed by degradation of the hydroxymethylphosphine. Elimination of formaldehyde from PCy2CH2OH (Cy=cyclohexyl) was also promoted by treatment of RuCl2[P(C6H5)3]3 in ethanol to give RuCl2(PHCy2)4 under mild conditions. On the other hand, the substitution reaction using Cp*RuCl(isoprene) with the hydroxymethylphosphine ligands proceeded smoothly with formation of Cp*RuCl(L)2 [2a-2c; L=P(C6H5)2CH2OH, PCy(CH2OH)2, and P(CH2OH)3] in good yields. The isolable hydroxymethylphosphine complexes 1 and 2 efficiently catalyzed the hydrogenative amidation of supercritical carbon dioxide (scCO2) to N,N-dimethylformamide (DMF).  相似文献   

12.
[RuCl2(CO)3]2/Et3N and (eta 3-C3H5)RuBr(CO)3/Et3N are highly effective catalyst systems for carbonylative cyclization of allylic carbonates with alkenes to give the corresponding cyclopentenones in high yields. For example, treatment of allyl methyl carbonate (1a) with 2-norbornene (2a) in the presence of a catalytic amount of [RuCl2(CO)3]2 (2.5 mol %) and Et3N (10 mol %) at 120 degrees C for 5 h under 3 atm of carbon monoxide gave the corresponding cyclopentenone, exo-4-methyltricyclo[5.2.1.0(2,6)]dec-4-en-3-one (3a), in 80% yield with high stereoselectivity (exo 100%).  相似文献   

13.
The ruthenium(II)-triphos acetato complex [RuCl(OAc)(kappa3-triphos)] (triphos = (PPh2CH2)3CMe) has been found to be an active catalyst precursor for the hydrogenation of 1-alkenes under relatively mild conditions (5-50 bar H2, 50 degrees C). In contrast to related triphenylphosphine complexes, [RuCl(OAc)(kappa3-triphos)] is much less air sensitive and high catalytic activities were achieved when catalyst samples were prepared without exclusion of air or moisture. Substitution of the acetato ligand can be effected by treatment of acid, affording [Ru2(mu-Cl)3(kappa3-triphos)2]Cl and [RuCl(kappa3-triphos)]2(BF4)2 with aqueous HCl and [Et2OH]BF4, respectively, or by heating with dmpm in the presence of [NH4]PF6, resulting in formation of [RuCl(kappa2-dmpm)(kappa3-triphos)]PF6 (dmpm = PMe2CH2PMe2). A hydride complex, [RuHCl(kappa3-triphos)], formed by acetato-mediated heterolytic cleavage of dihydrogen is proposed as the active catalytic species. An inner-sphere, monohydride mechanism is suggested for the catalytic cycle, with chloro and triphos ligands playing a spectator role. These mechanistic proposals are consistent with reactivity studies carried out on [RuCl(OAc)(kappa3-triphos)] and [RuH(OAc)(kappa3-triphos)] and supported by a computational analysis. The solid-state structures of [RuCl(OAc)(kappa3-triphos)], [RuCl(kappa3-triphos)]2(BF4)2, and [RuCl(kappa2-dmpm)(kappa3-triphos)]PF6 have been established by X-ray diffraction.  相似文献   

14.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

15.
Polydentate ligands, N,N'-bis[o-(diphenylphosphino)benzylidene]-1,2-propane-diamine [P2N2Me for short] and N,N'-bis[o-(diphenylphosphino)benzy1]-1,2-propanediamine [P2N2 H4Me for short] have been synthesized. The interaction of RuCl2(DMSO)4 with one equivalent of P2N2Me or P2N2H4Me in refluxing toluene gave trans-RuCl2(P2N2Me) and trans-RuCl2(P2N4H4Me) in good yield, respectively. The ligands and the complexes have been fully characterized by elemental analysis and spectroscopic methods. The complexes act as an excellent catalyst precursor in hydrogen transfer hydrogenation of acetophenone in catalyst: acetophenone :iso-PrOK of 1: 100: 15, leading to 2-phenylethanol of 89-96% yield.  相似文献   

16.
制备并用UV、循环伏安(CV)和NMR 法研究了NAMI(新抗肿瘤转移抑制剂, trans-[RuCl4(DMSO)(imidazole)]Na·2DMSO)衍生物trans-[RuCl4(DMSO)(2-MeIm)]Na·2DMSO (2-MeIm=2-甲基咪唑, 化合物1)和trans-[RuCl4(DMSO)-(N-EtIm)]Na·2DMSO (N-EtIm=N-乙基咪唑, 化合物2)的水解机理-动力学、溶液稳定性和电化学性质. 化合物1 和化合物2 与NAMI 相似, 在pH 7.40 的缓冲溶液中发生两步脱氯水解反应(I 氯水解及II 氯水解) (分步反应); 在酸性溶液(pH 5.00)中脱DMSO 水解. 通过线性拟合得到各水解反应速率常数kobs 及半衰期t1/2. 结果表明化合物在酸性溶液中的稳定性相对较高. 在NAMI 衍生物咪唑环的N 位引入乙基比在2 位引入甲基生成的化合物稳定. 含氮配体相同时,NAMI-A(新抗肿瘤转移抑制剂, A: 该系列中的第一个化合物, trans-[RuCl4(DMSO)(imidazole)][Himidazole])衍生物略比相应的NAMI 衍生物稳定.  相似文献   

17.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

18.
The interaction between [RuCl(AA)(cymene)]n supramolecular aggregates (1, AA = alpha-amino-acidate = alpha-aminoisobutyrate; 2, AA = N,N-dimethyl-Gly; 3, AA = Ala; 4, AA = Pro; cymene = 4-isopropyltoluene) and ionic species derived from NBu4PF6 and KPF6 is investigated through diffusion NMR measurements and 19F,1H-hetero-nuclear Overhauser effect spectroscopy experiments in CDCl3 and CD2Cl2. Aggregates containing the -NH2 functionality (1 and 3) interact strongly with NBu4PF6 as demonstrated by the observation of intense nuclear Overhauser effects between the fluorine atoms of PF6(-) and the protons of [RuCl(AA)(cymene)]n. Unexpectedly, diffusion NMR measurements indicate that the average size of the aggregates increases when a small amount of NBu4PF6 is added (Csalt/CRu < 0.1) in CD2Cl2. At higher concentration levels of NBu4PF6 or in CDCl3, NBu4PF6 exerts a destructive effect that reduces the average size of the aggregates. [RuCl(AA)(cymene)]n aggregates with NR-H (4) and NR2 (2) functionalities are little affected by the addition of NBu4PF6. KPF6 also interacts with [RuCl(AA)(cymene)]n aggregates as demonstrated by the fact that it becomes noticeably soluble in CDCl3 and CD2Cl2. Diffusion1H-NMR experiments show that the addition of KPF6 does not markedly alter the average size of [RuCl(AA)(cymene)]n supramolecular aggregates. Interestingly, the average size of PF6(-)-containing supramolecular aggregates is, in some cases, slightly higher than that of the ones that do not contain PF6(-). This was deduced by independent measurements of the hydrodynamic volume of the anion and of the ruthenium complexes by diffusion 19F- and 1H-NMR experiments, respectively.  相似文献   

19.
Reaction of the dimers [RuCl2(eta6-arene)]2 (arene = benzene, p-cymene, mesitylene) with salicyloxazolines in the presence of NaOMe gives complexes [RuCl(R-saloxaz)(arene)] (1-5) which have been fully characterised. Complexes [RuL(iPr-saloxaz)(mes)]Y (L = py, 2-Mepy, 4-Mepy; PPh3; Y- = SbF6 or BPh4) 6-9 were prepared by treating the chloride 2a with ligand L and NaY (Y- = SbF6 or BPh4) in methanol at reflux. Halide complexes [RuX(iPr-saloxaz)(mes)](X = Br, 10; X = I, 11) were synthesised by treating 2a with AgSbF6 then with 1.2 equivalents of KBr or NaI, the methyl complex [RuMe(iPr-saloxaz)(mes)] 12 was synthesised from 2a by reaction with MeLi. Five complexes, [RuCl(iPr-saloxaz)(mes)] 2a, [RuCl(tBu-saloxaz)(p-cymene)] 3b, [RuCl(Ph-saloxaz)(mes)] 5a, [Ru(4-Mepy)(iPr-saloxaz)(mes)][SbF6] 7, and [Ru(PPh3)(iPr-saloxaz)(mes)][SbF6] 9, have been characterised by X-ray crystallography. Treatment of complexes 1-5 with AgSbF6 gives cationic species which are enantioselective catalysts for the Diels-Alder reaction of acroleins with cyclopentadiene, the effect of substituents on enantioselectivity has been examined.  相似文献   

20.
The reaction of electron-rich carbene-precursor olefins containing two imidazolinylidene moieties [(2,4,6-Me(3)C(6)H(2)CH(2))NCH(2)CH(2)N(R)Cdbond;](2) (2a: R=CH(2)CH(2)OMe, 2 b R=CH(2)Mes), bearing at least one 2,4,6-trimethylbenzyl (R=CH(2)Mes) group on the nitrogen atom, with [RuCl(2)(arene)](2) (arene=p-cymene, hexamethylbenzene) selectively leads to two types of complexes. The cleavage of the chloride bridges occurs first to yield the expected (carbene) (arene)ruthenium(II) complex 3. Then a further arene displacement reaction takes place to give the chelated eta(6)-mesityl,eta(1)-carbene-ruthenium complexes 4 and 5. An analogous eta(6)-arene,eta(1)-carbene complex with a benzimidazole frame 6 was isolated from an in situ reaction between [RuCl(2)(p-cymene)](2), the corresponding benzimidazolium salt and cesium carbonate. On heating, the RuCl(2)(imidazolinylidene) (p-cymene) complex 8, with p-methoxybenzyl pendent groups attached to the N atoms, leads to intramolecular p-cymene displacement and to the chelated eta(6)-arene,eta(1)-carbene complex 9. On reaction with AgOTf and the propargylic alcohol HCtbond;CCPh(2)OH, compounds 4-6 were transformed into the corresponding ruthenium allenylidene intermediates (4-->10, 5-->11, 6-->12). The in situ generated intermediates 10-12 were found to be active and selective catalysts for ring-closing metathesis (RCM) or cycloisomerisation reactions depending on the nature of the 1,6-dienes. Two complexes [RuCl(2)[eta(1)-CN(CH(2)C(6)H(2)Me(3)-2,4,6)CH(2)CH(2)N- (CH(2)CH(2)OMe)](C(6)Me(6))] 3 with a monodentate carbene ligand and [RuCl(2)[eta(1)-CN[CH(2)(eta(6)-C(6)H(2)Me(3)-2,4,6)]CH(2)CH(2)N-(CH(2)C(6)H(2)Me(3)-2,4,6)]] 5 with a chelating carbene-arene ligand were characterised by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号