首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solution is provided for the elastodynamic problem of a crack at an arbitrary angle to the graded interfacial zone in bonded media under the action of antiplane shear impact. The interfacial zone is modeled by a nonhomogeneous interlayer with the spatially varying shear modulus and mass density in terms of power functions between the two dissimilar, homogeneous half-planes. Based on the use of Laplace and Fourier integral transforms and the coordinate transformations of basic field variables, formulation of the transient crack problem is reduced to solving a Cauchy-type singular integral equation in the Laplace transform domain. The crack-tip response in the physical domain is recovered via the inverse Laplace transform and the values of dynamic mode III stress intensity factors are obtained as a function of time. A comprehensive parametric study is then presented of the effects of crack obliquity on the overshoot behavior of the transient crack-tip response, by plotting the peak values of the dynamic stress intensity factors versus the crack orientation angle for various material and geometric combinations of the bonded system.  相似文献   

2.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

3.
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208).  相似文献   

4.
Summary  In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact. Received 4 December 2001; accepted for publication 9 July 2002 This work is supported by the National Natural Science Foundation of China through Grant No. 10132010.  相似文献   

5.
Summary  The steady-state of a propagation eccentric crack in a piezoelectric ceramic strip bonded between two elastic materials under combined anti-plane mechanical shear and in-plane electrical loadings is considered in this paper. The analysis based on the integral transform approach is conducted on the permeable crack condition. Field intensity factors and energy release rate are obtained in terms of a Fredholm integral equation of the second kind. It is shown for this geometry that the crack propagation speed has influence on the dynamic energy release rate. The initial crack branching angle for a PZT-5H piezoceramic structure is predicted by the maximum energy release rate criterion. Received 23 January 2001; accepted for publication 18 October 2001  相似文献   

6.
This paper provides the solution to the problem of dissimilar, homogeneous semi-infinite strips bonded through a functionally graded interlayer and weakened by an embedded or edge interfacial crack. The bonded system is assumed to be under antiplane deformation, subjected to either traction-free or clamped boundary conditions along its bounding planes. Based on the Fourier integral transform, the problem is formulated in terms of a singular integral equation which has a simple Cauchy kernel for the embedded crack and a generalized Cauchy kernel for the edge crack. In the numerical results, the effects of geometric and material parameters of the bonded system on the crack-tip stress intensity factors are presented in order to quantify the interfacial fracture behavior in the presence of the graded interlayer.  相似文献   

7.
Summary  The problem of an interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials is considered under the conditions of anti-plane shear and in-plane electric loading. The crack surfaces are assumed to be impermeable to the electric field. An integral transform technique is employed to reduce the problem under consideration to dual integral equations. By solving the resulting dual integral equations, the intensity factors of the stress and the electric displacement and the energy release rate as well as the crack sliding displacement and the electric voltage across the crack surfaces are obtained in explicit form for the case of concentrated forces and free charges at the crack surfaces and at the boundary. The derived results can be taken as fundamental solutions which can be superposed to model more realistic problems. Received 10 November 2000; accepted for publication 28 March 2001  相似文献   

8.
This paper studies the mode III crack problem of two bonded functionally graded piezoelectric half planes which contain a crack respectively. These two cracks are located normal to the interface. All the material properties are assumed to vary along the direction of the crack line. A system of singular integral equations for electrically impermeable and permeable cracks is derived and solved numerically by using the Gauss–Chebyshev integration formula. The influence of the nonhomogeneous parameters and the dependence of the crack interactions on the stress and electric displacement intensity factors are investigated.  相似文献   

9.
功能梯度压电压磁材料中断裂问题分析   总被引:12,自引:3,他引:12  
分析了功能梯度压电/压磁材料中裂纹在反平面剪切载荷下的断裂问题. 为了便于分析,假设材料性质沿着裂纹的法线方向呈指数变化. 利用Fourier变换,问题可以转化为对未知数是裂纹表面张开位移的一对对偶积分方程的求解,此对偶积分方程采用Schmidt方法求解. 最后分析了裂纹长度及表征功能梯度材料的参数βl对应力,电位移和磁通量强度因子的影响.  相似文献   

10.
Summary  Thermopiezoelastic materials have recently attracted considerable attention because of their potential use in intelligent or smart structural systems. The governing equations of a thermopiezoelastic medium are more complex due to the intrinsic coupling effects that take place among mechanical, electrical and thermal fields. In this analysis, we deal with the problem of a crack in a semi-infinite, transversely isotropic, thermopiezoelastic material by means of potential functions and Fourier transforms under steady heat-flux loading conditions. The problem is reduced to a singular integral equation that is solved. The thermal stress intensity factor for a crack situated in a cadmium selenide material is calculated. Received 20 March 2001; accepted for publication 18 October 2001  相似文献   

11.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

12.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

13.
This paper examines the dynamic response of an interface crack between two dissimilar magneto-electro-elastic materials subjected to the mechanical and electric magnetic impacts. The magneto-electric impermeable boundary conditions are adopted. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations in Laplace transform domain, which are solved numerically. Lots of numerical results are given graphically in time domain. The effects of electric impact loading and magnetic impact loading on dynamic energy density factors are discussed. Crack growth and propagation is predicted. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

14.
Asymptotic expansion for the out of plane displacement field around a crack propagating along the gradient in a functionally graded material is developed. The irregular behavior of one of the terms in the expansion at low crack speeds is further examined and a remedial solution, which is well behaved at low crack speeds, is proposed. The developed out of plane displacement field is used to estimate stress intensity factor from quasi-static finite element solution. The results indicate that inclusion of the proposed nonhomogeneity specific terms gives estimates of stress intensity factor, which are consistent with existing analytical predictions.  相似文献   

15.
弹性功能梯度材料板条中周期裂纹的反平面问题   总被引:1,自引:0,他引:1  
陈宜周 《力学学报》2004,36(4):501-506
讨论了弹性功能梯度材料板条中裂纹的反平面问题. 用Fourier 变换方法得到了一个基本解. 这个基本解表示了实轴上一点作用有点位错时引起的影响. 利 用此基本解可得单裂纹和周期裂纹问题的奇异积分方程. 在周期裂纹求解时, 远处裂纹对于中央裂纹的影响作了有效的近似处理. 最后, 给出了数值结果, 它表示了材料性质对于裂纹端应力强度因子的影响.  相似文献   

16.
This paper presents an analysis of an elliptical crack that is perpendicular to a functionally graded interfacial zone between two fully bonded solids. The functionally graded interfacial zone is treated as a non-homogeneous solid layer with its elastic modulus varying in the thickness direction. A generalized Kelvin solution based boundary element method is employed for the calculation of the stress intensity factors associated with the three-dimensional crack problem. The elliptical crack surface is subject to either uniform normal traction or uniform shear traction. The stress intensity factors are examined by taking into account the effects of the non-homogeneity parameter and thickness of the functionally graded interfacial zone, as well as the crack distance to the zone. The SIF values are further incorporated into the S-criterion for prediction of crack growth. The paper presents the most possible direction and location of the elliptical crack growth under an inclined tensile (or compressive) load. The paper further presents results of the critical external loads that would cause the elliptical crack to grow at the most possible location and along the most possible direction. The paper also examines the effects of external load direction and material and geometrical parameters on the critical loads.  相似文献   

17.
Summary  An interface crack problem is investigated under various assumptions on an interface between two elastic materials. The interface is modeled by an additional third structure (thin elastic wedge of differing elastic properties) matching the bonded materials, or by introducing special boundary conditions on the crack line ahead. The main emphasis of the paper is placed on a comparison of the asymptotic expansion of the elastic solutions near the crack tip obtained for the different models. In particular, the behaviour of the stress singularity exponent and the generalized SIF are discussed. Numerical examples are presented. Received 16 August 2000; accepted for publication 26 May 2001  相似文献   

18.
An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To solve this problem,a singularity separation technique is presented in the paper to split the singular integral into regular and singular parts by subtracting and adding a singular term.The singular domain integral is transformed into a boundary integral using the radial integration method.Analytical expressions of the radial integrals are obtained for two commonly used shear moduli varying with spatial coordinates.The regular domain integral,after expressing the displacements in terms of the radial basis functions,is also transformed to the boundary using the radial integration method.Finally,a boundary element method without internal cells is established for computing the stresses at internal nodes of the functionally graded materials with varying shear modulus.  相似文献   

19.
In this paper, a two dimensional functionally graded material (2D-FGM) under an anti-plane load with an internal crack is considered. The crack is oriented in an arbitrary direction. The material properties are assumed to vary exponentially in two planar directions. The problem is analyzed and solved by two different methods namely Fourier integral transforms with singular integral equation technique, and then by the finite element method. The effects of crack orientation, material non-homogeneity, and other parameters on the value of stress intensity factor (SIF) are studied. Finally, the obtained results for Mode III stress intensity factor of different methods are compared.  相似文献   

20.
Abstract

The dynamic behavior of an arc-shaped interfacial crack in an orthotropic functionally graded annular bi-material structure is investigated. In order for the analysis to be executable, the material properties are assumed to vary with the power function of the radial coordinates. By applying the separation variable method, the boundary value problem of the partial differential equation describing the fracture problem of this article can be transformed into a Cauchy kernel singular integral equation with the unknown jump of displacements across the crack surfaces. The obtained integral equation is solved numerically by Lobatto–Chebyshev collocation method to show the effects of the geometric and physical parameters upon the dynamic stress field near the crack tips.

Communicated by Kuang-Hua Chang.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号