首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory was used to compare reaction pathways for H2 formation and H+ reduction catalyzed by models of the binuclear cluster found in the active site of [Fe] hydrogenases. Terminal H+ binding to an Fe(I)-Fe(I) form, followed by monoelectron reduction and protonation of the di(thiomethyl)amine ligand, can conveniently lead to H2 formation and release, suggesting that this mechanism could be operative within the enzyme active site. However, a pathway that implies the initial formation of Fe(II)-Fe(II) mu-H species and release of H2 from an Fe(II)-Fe(I) form is characterized by only slightly less favored energy profiles. In both cases, H2 formation becomes less favored when taking into account the competition between CN and amine groups for H+ binding, an observation that can be relevant for the design of novel synthetic catalysts. H2 cleavage can take place on Fe(II)-Fe(II) redox species, in agreement with previous proposals [Fan, H.-J.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828] and, in complexes characterized by terminal CO groups, does not need the involvement of an external base. The step in H2 oxidation characterized by larger energy barriers corresponds to the second H+ extraction from the cluster, both considering Fe(II)-Fe(II) and Fe(II)-Fe(III) species. A comparison of the different reaction pathways reveals that H2 formation could involve only Fe(I)-Fe(I), Fe(II)-Fe(I), and Fe(II)-Fe(II) species, whereas Fe(III)-Fe(II) species might be relevant in H2 cleavage.  相似文献   

2.
Density functional theory has been used to investigate complexes related to the [2Fe](H) subcluster of [Fe]-hydrogenases. In particular, the effects on structural and electronic properties of redox state and ligands with different sigma-donor pi-acceptor character, which replace the cysteine residue coordinated to the [2Fe](H) subcluster in the enzyme, have been investigated. Results show that the structural and electronic properties of fully reduced Fe(I)Fe(I) complexes are strongly affected by the nature of the ligand L, and in particular, a progressive rotation of the Fe(d)(CO)(2)(CN) group, with a CO ligand moving from a terminal to a semibridged position, is observed going from the softest to the hardest ligand. For the partially oxidized Fe(I)Fe(II) complexes, two isomers of similar stability, characterized either by a CO ligand in a terminal or bridged position, have been observed. The switching between the two forms is associated with a spin and charge transfer between the two iron atoms, a feature that could be relevant in the catalytic mechanism of dihydrogen activation. The structure of the fully oxidized Fe(II)Fe(II) models is extremely dependent on the nature of the L ligand; one CO group coordinated to Fe(d) switches from terminal to bridging position going from complexes characterized by neutral to anionic L ligands.  相似文献   

3.
Protonation of the [Fe]-hydrogenase model complex (mu-pdt)[Fe(CO)(2)(PMe(3))](2) (pdt = SCH(2)CH(2)CH(2)S) produces a species with a high field (1)H NMR resonance, isolated as the stable [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+)[PF(6)](-) salt. Structural characterization found little difference in the 2Fe2S butterfly cores, with Fe.Fe distances of 2.555(2) and 2.578(1) A for the Fe-Fe bonded neutral species and the bridging hydride species, respectively (Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710). Both are similar to the average Fe.Fe distance found in structures of three Fe-only hydrogenase active site 2Fe2S clusters: 2.6 A. A series of similar complexes (mu-edt)-, (mu-o-xyldt)-, and (mu-SEt)(2)[Fe(CO)(2)(PMe(3))](2) (edt = SCH(2)CH(2)S; o-xyldt = SCH(2)C(6)H(4)CH(2)S), (mu-pdt)[Fe(CO)(2)(PMe(2)Ph)](2), and their protonated derivatives likewise show uniformity in the Fe-Fe bond lengths of the neutral complexes and Fe.Fe distances in the cationic bridging hydrides. The positions of the PMe(3) and PMe(2)Ph ligands are dictated by the orientation of the S-C bonds in the (mu-SRS) or (mu-SR)(2) bridges and the subsequent steric hindrance of R. The Fe(II)(mu-H)Fe(II) complexes were compared for their ability to facilitate H/D exchange reactions, as have been used as assays of H(2)ase activity. In a reaction that is promoted by light but inhibited by CO, the [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) complex shows H/D exchange activity with D(2), producing [(mu-D)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) in CH(2)Cl(2) and in acetone, but not in CH(3)CN. In the presence of light, H/D scrambling between D(2)O and H(2) is also promoted by the Fe(II)(mu-H)Fe(II) catalyst. The requirement of an open site suggests that the key step in the reactions involves D(2) or H(2) binding to Fe(II) followed by deprotonation by the internal hydride base, or by external water. As indicated by similar catalytic efficiencies of members of the series, the nature of the bridging thiolates has little influence on the reactions. Comparison to [Fe]H(2)ase enzyme active site redox levels suggests that at least one Fe(II) must be available for H(2) uptake while a reduced or an electron-rich Fe(I)Fe(I) metal-metal bonded redox level is required for proton uptake.  相似文献   

4.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   

5.
In this work, we employ density functional theory to assign vibrational signatures of [FeFe]-hydrogenase intermediates to molecular structures. For this purpose, we perform an exhaustive analysis of structures and harmonic vibrations of a series of CN and CO containing model clusters of the [FeFe]-hydrogenase enzyme active site considering also different charges, counterions, and solvents. The pure density functional BP86 in combination with a triple-ζ polarized basis set produce reliable molecular structures as well as harmonic vibrations. Calculated CN and CO stretching vibrations are analyzed separately. Scaled vibrational frequencies are then applied to assign intermediates in [FeFe]-hydrogenase's reaction cycle. The results nicely complement the previous studies of Darensbourg and Hall, and Zilberman et al. The infrared spectrum of the H(ox) form is in very good agreement with the calculated spectrum of the Fe(I)Fe(II) model complex featuring a free coordination site at the distal Fe atom, as well as, with the calculated spectra of the complexes in which H(2) or H(2)O are coordinated at this site. The spectrum of H(red) measured from Desulfovibrio desulfuricans is compatible with a mixture of a Fe(I)Fe(I) species with all terminal COs, and a Fe(I)Fe(I) species with protonated dtma ligand, while the spectrum of H(red) recently measured from Chlamydomonas reinhardtii is compatible with a mixture of a Fe(I)Fe(I) species with a bridged CO, and a Fe(II)Fe(II) species with a terminal hydride bound to the Fe atom.  相似文献   

6.
氢化酶仿生化学是当前有机金属化学领域研究的前沿课题,其主要内容为针对氢化酶的活性中心结构和功能进行化学模拟研究.自然界中已经发现的氢化酶有三种,其中[NiFe]氢化酶、[FeFe]氢化酶研究较多.单铁氢化酶发现于1990年,是产甲烷杆菌在厌氧和镍缺乏的条件下合成的.区别于其他两种氢化酶,其活性中心不含Fe-S簇,且仅含有一个Fe原子,并且仅能在底物存在的情况下,催化异裂氢分子并选择性还原特定底物,为产甲烷杆菌代谢提供能量.研究单铁氢化酶的结构和功能,模拟其活化氢、利用氢的过程,对于探索清洁能源的利用和开发新的非贵金属催化剂具有重要意义.本文以单铁氢化酶(Hmd)结构和功能模拟为导向,针对单铁氢化酶一级配位结构,设计合成了两个新模型化合物.通过IR, NMR, X射线单晶衍射等手段表征分析了模型化合物的性质并确认其结构.探索了其质子化反应特性、电催化还原质子制氢的特性.为了进一步模拟Hmd催化裂解氢气、完成氢转移的功能,以所合成模型物为催化剂实现了在常温常压下,以乙醇作为质子源的催化转移氢化过程.新单铁模型配合物Fe(CO)2PR3(NN)(R = Cy (3), Ph (4), NN,邻苯二胺二价阴离子配体)由NN二齿配体与前体化合物Fe(CO)3I2PR3进行配体取代反应合成.模型化合物活性中心为一个二价铁原子,拥有两个处于cis-位置的羰基配体,一个邻苯二胺双齿配体(两个氮原子进行配位)以及一个有机膦配体.通过红外光谱表征所合成的具有不饱和五配位结构化合物的光谱性质,可以得到配合物Fe(CO)2PCy3(NN)的羰基红外特征谱峰为1974,1919 cm–1,配合物Fe(CO)2PPh3(NN)的红外特征谱峰在1985和1929 cm–1处.通过单晶X射线衍射表征确认了两个化合物结构,并获取晶体学数据.经研究发现, Fe(CO)2PR3(NN)能够发生酸碱调控下可逆的质子化/脱质子化过程.基于红外光谱和密度泛函理论计算推断邻苯二胺阴离子配体可以作为内部碱基.在酸性条件下, Fe(CO)2PR3(NN)分子内部碱基氮原子通过质子化反应结合一个质子,生成Fe(CO)2PR3(NN)·H+.加入碱之后,重新生成起始化合物Fe(CO)2PR3(NN).表明N原子作为内部碱基,具有结合和转移质子的能力.该性质与Hmd中半胱氨酸硫配体具有一致性.通过循环伏安曲线研究了配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)的电化学性质.其中配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)均具有两个不可逆的还原峰和氧化峰.在电化学制氢研究中,配合物Fe(CO)2PPh3(NN)的还原峰电流随着乙酸的加入增幅较大,展现出较强的催化质子还原的性质.通过与其他单铁模型配合物对比,可以推断第一个还原峰归属为配合物由FeI转化为FeI,第二个可逆还原峰归属为配合物由FeI转化为Fe0.同时,配合物Fe(CO)2PPh3(NN)第一个还原峰向高电位移动,该现象与双铁模型化合物的电化学性质较为一致.进一步研究发现,模型化合物具有催化转移氢化的活性.在常温下,乙醇溶剂中, Fe(CO)2PCy3(NN)能够催化对苯醌还原转化为对苯二酚,其中对苯醌的转化率达到89%,对苯二酚的产率达到40%.结合实验数据以及文献资料分析,认为乙醇在催化氢化中可以作为质子源,并且提出了催化转移氢化反应过程的机理.认为催化氢化过程中形成了-Fe-H-C-O-H-N-六元环,通过分子间相互作用完成了氢原子转移过程.该研究结论对单铁氢化酶活性中心模型化合物在催化氢化反应中的应用具有一定的参考价值.  相似文献   

7.
The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.  相似文献   

8.
This paper summarizes studies on the redox behavior of synthetic models for the [FeFe]-hydrogenases, consisting of diiron dithiolato carbonyl complexes bearing the amine cofactor and its N-benzyl derivative. Of specific interest are the causes of the low reactivity of oxidized models toward H(2), which contrasts with the high activity of these enzymes for H(2) oxidation. The redox and acid-base properties of the model complexes [Fe(2)[(SCH(2))(2)NR](CO)(3)(dppv)(PMe(3))](+) ([2](+) for R = H and [2'](+) for R = CH(2)C(6)H(5), dppv = cis-1,2-bis(diphenylphosphino)ethylene)) indicate that addition of H(2) followed by deprotonation are (i) endothermic for the mixed valence (Fe(II)Fe(I)) state and (ii) exothermic for the diferrous (Fe(II)Fe(II)) state. The diferrous state is shown to be unstable with respect to coordination of the amine to Fe, a derivative of which was characterized crystallographically. The redox and acid-base properties for the mixed valence models differ strongly for those containing the amine cofactor versus those derived from propanedithiolate. Protonation of [2'](+) induces disproportionation to a 1:1 mixture of the ammonium [H2'](+) (Fe(I)Fe(I)) and the dication [2'](2+) (Fe(II)Fe(II)). This effect is consistent with substantial enhancement of the basicity of the amine in the Fe(I)Fe(I) state vs the Fe(II)Fe(I) state. The Fe(I)Fe(I) ammonium compounds are rapid and efficient H-atom donors toward the nitroxyl compound TEMPO. The atom transfer is proposed to proceed via the hydride. Collectively, the results suggest that proton-coupled electron-transfer pathways should be considered for H(2) activation by the [FeFe]-hydrogenases.  相似文献   

9.
10.
A series of novel polyiron species have been prepared from the reaction of iron chloride with the 2,5-disubstituted pyridines H2L(n) (H2L1) = N,N'-bis(n-butylcarbamoyl)pyridine-2,6-dicarboxamide; H2L2 = N,N'-bis(n-ethylcarbamoyl)pyridine-2,6-dicarboxamide). By small modifications of the experimental conditions under which the reactions are carried out, it has been possible to prepare the quadruply stranded diiron(II) complex [Fe2(mu-H2L1)4(mu-Cl)2][FeCl4]2 (1), the metallamacrocycle [Fe2(mu-H2L1)2(THF)4Cl2][FeCl4]2 (2), the hexairon(III) compound [Fe6(L1)2(mu-OMe)6(mu4-O)2Cl4] (3), and the mixed-valence trinuclear iron complexes [Fe3(L(n))3(mu3-O)] (n = 1, 4; n = 2, 5). The X-ray crystal structures of 3 and 5 and magnetic studies for all the compounds are herein presented. Interestingly, the structural analysis of 5 at room temperature indicates that one of the iron centers is Fe(III) while the other two have an average valence state between Fe(II) and Fe(III). The five complexes herein presented demonstrate the great versatility that the new ligand has as a building block for the formation of supramolecular coordination assemblies.  相似文献   

11.
A number of thermally stable iron(II)-thiolate cyanocarbonyl complexes, cis,cis-[Fe(CN)2(CO)2(CS3-S,S)]2-(1), mer-[Fe(CO)2(CN)3(NCCH3)]-(2)mer-[Fe(CO)3(CN)(CS3-S,S)]-(3), cis-[Fe(CO)2(CN)(S(CH2)2S(CH2)2S-S,S,S)]-(4), [Fe(CO)2(CN)3Br]2-(5), mer-[Fe(CO)2(CN)3(m-SC6H4Br)]2-(6) and mer-[Fe(CO)2(CN)3(SPh)]2-(7) were isolated and characterized by IR and X-ray diffraction analysis. The extrusion of one strong sigma-donor CN- ligand instead of CO from the iron(II) center of the thermally stable complexes [FeII(CO)2(CN)3Br]2-(5) containing less electron-donating bromide reflects the electron-rich character of the mononuclear [FeII(CN)2(CO)2(CS3-S,S)]2-(1) when ligated by by the bidentate thiolate, and the combination of one cyanide, two carbonyls and a tridentate thiolate provides the stable complex 4 as a result of the reaction of complex 5 and chelating ligand [S(CH2)2S(CH2)2S]2-. The preference of the sixth ligand coordinated to the unsaturated [FeII(CO)(CN)2(CS3-S,S)]2- Fe(II) center, the iron-site architecture of the bimetallic Ni-Fe active-site of [NiFe] hydrogenases, is a strong pi-acceptor CO group. Scrutiny of the coordination chemistry of iron(II)-thiolate cyanocarbonyl species [FeII(CO)x(CN)y(SR)z]n- reveals that certain combinations of thiolate, cyanide and carbonyl ligands (3 < or = y+z > or = 4) bound to Fe(II) are stable and this could point the way to understand the reasons for Nature's choice of combinations of these ligands in hydrogenases.  相似文献   

12.
Iron(II) complexes obtained from tetradentate, rigid, linear N4 ligands have been investigated to appraise the influence of steric effects and the impact of trans-coordinated anions on the spin-transition behavior. As expected, the well-designed ligands embrace the metal center, resulting in octahedral iron(II) complexes where the basal plane is fully occupied by the pyridine/pyrazole N4 ligand, while anions or solvent molecules are exclusively axially coordinated. Precursor complexes, namely, [Fe(bpzbpy)(MeOH)2](BF4)2 (where bpzbpy symbolizes the ligand 6,6'-bis(N-pyrazolylmethyl)-2,2'-bipyridine) and [Fe(mbpzbpy)(MeOH)2](BF4)2 (where mbpzbpy symbolizes the ligand 6,6'-bis(3,5-dimethyl-N-pyrazolmethyl)-2,2'-bipyridine), have been used for the in situ preparation of a series of structural analogues via the exchange of the weakly coordinated trans methanol molecules by various anions, such as thiocyanate, selenocyanate, or dicyanamide. The magnetic properties of all seven iron(II) compounds thus obtained have been investigated. Two iron(II) complexes, i.e., [Fe(bpzbpy)(NCS)2] and [Fe(bpzbpy)(NCSe)2], exhibit gradual spin-crossover (SCO) properties typical of isolated mononuclear species with weak cooperative interaction. These two SCO materials have been studied by M?ssbauer spectroscopy, and the light-induced excited spin state trapping effect has been investigated, revealing the possibility to induce the spin-transition both by temperature variation and by light irradiation. A correlation between steric/anion effect and SCO behavior is suggested.  相似文献   

13.
We reported the synthesis and characterization of peptide complexes of low-spin iron(III) [Fe(bpb)(py)2][ClO4] (1) and Na[Fe(bpb)(CN)2] (2) [H2bpb = 1,2-bis(pyridine-2-carboxamido)benzene; py = pyridine], where iron is coordinated to four nitrogen donors in the equatorial plane with two amide nitrogen anions and two pyridine nitrogen donors (Ray, M.; Mukherjee, R.; Richardson, J. F.; Buchanan, R. M. J. Chem. Soc., Dalton Trans. 1993, 2451). Chemical oxidation of 2 and a new low-spin iron(III) complex Na[Fe(Me6bpb)(CN)2].H2O (4) [synthesized from a new iron(III) complex [Fe(Me6bpb)(py)2][ClO4] (3) (S = 1/2)] [H2Me6bpb = 1,2-bis(3,5-dimethylpyridine2-carboxamido)-4,5-dimethylbenzene) by (NH4)2Ce(NO3)6 afforded isolation of two novel complexes [Fe(bpb)-(CN)2] (5) and [Fe(Me6bpb)(CN)2].H2O (6). All the complexes have been characterized by physicochemical techniques. While 1-4 are brown/green, 5 and 6 are violet/bluish violet. The collective evidence from infrared, electronic, M?ssbauer, and 1H NMR spectroscopies, from temperature-dependent magnetic susceptibility data, and from cyclic voltammetric studies provides unambiguous evidence that 5 and 6 are low-spin iron(III) ligand cation radical complexes rather than iron(IV) complexes. Cyclic voltammetric studies on isolated oxidized complexes 5 and 6 display identical behavior (a metal-centered reduction and a ligand-centered oxidation) to that observed for complexes 2 and 4, respectively. The M?ssbauer data for 6 are almost identical with those of the parent compound 4, providing compelling evidence that oxidation has occurred at the ligand in a site remote from the iron atom. Strong antiferromagnetic coupling (-2J > or = 450 cm(-1)) of the S = 1/2 iron atom with the S = 1/2 ligand pi-cation radical leads to an effectively S = 0 ground state of 5 and 6. The oxidized complexes display 1H NMR spectra (in CDCl3 solution), characteristic of diamagnetic species.  相似文献   

14.
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown-6){Cp*Fe(η(4)-C(10)H(8))}] (K1), [K(18-crown-6){Cp*Fe(η(4)-C(14)H(10))}] (K2), [Cp*Fe(η(4)-C(10)H(8))] (1), and [Cp*Fe(η(4)-C(14)H(10))] (2) were synthesized and characterized by NMR, UV-vis, and (57)Fe M?ssbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η(4)-C(10)H(8))](-) (1(-)) and [Cp*Fe(η(4)-C(14)H(10))](-) (2(-)) and reversibly oxidized to the cations [Cp*Fe(η(6)-C(10)H(8))](+) (1(+)) and [Cp*Fe(η(6)-C(14)H(10))](+) (2(+)). Reduced orbital charges and spin densities of the naphthalene complexes 1(-/0/+) and the anthracene derivatives 2(-/0/+) were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1(-) and 2(-) are best represented by low-spin Fe(II) ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin Fe(I) ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin Fe(II) ion coordinated to a ligand radical L(?-). Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.  相似文献   

15.
Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).  相似文献   

16.
Synthesis and structural, magnetic and electrochemical characterization of the Ni(hfac) 2(pyDTDA) and the Fe(hfac) 2(pyDTDA) complexes are reported (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-; pyDTDA = 4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl). Unlike the previously reported Mn(II) and Cu(II) complexes, but similar to the Co(II) complex, the Ni(II) and Fe(II) complexes are not dimerized in the solid state, allowing for magnetic coupling between the metal ion and paramagnetic ligand to be readily obtained from solid state magnetic measurements: Ni complex, J/k B = +132(1) K, using H = -2 J{ S Ni. S Rad} and g Ni = 2.04(2) and g Rad = 1.99(2); Fe complex, J/k B = -60.3(3) K, using H = -2 J{ S Fe. S Rad} and g av = 2.11(2). The iron complex is unusually unstable. A thermal decomposition product is isolated wherein the coordinated pyDTDA ligand appears to have been transformed into a coordinated 2-(2'-pyridyl)-4,6-bis(trifluoromethyl)pyrimidine. The iron complex also yields a solution decomposition product in the presence of air that is best described as an oxygen bridged iron(III) tetramer with two hfac ligands on each of three iron atoms and two oxidized pyDTDA ligands chelated on the fourth.  相似文献   

17.
Optimized structures for the redox species of the diiron active site in [Fe]-hydrogenase as observed by FTIR and for species in the catalytic cycle for the reversible H(2) oxidation have been determined by density-functional calculations on the active site model, [(L)(CO)(CN)Fe(mu-PDT)(mu-CO)Fe(CO)(CN)(L')](q)(L = H(2)O, CO, H(2), H(-); PDT = SCH(2)CH(2)CH(2)S, L' = CH(3)S(-), CH(3)SH; q = 0, 1-, 2-, 3-). Analytical DFT frequencies on model complexes (mu-PDT)Fe(2)(CO)(6) and [(mu-PDT)Fe(2)(CO)(4)(CN)(2)](2)(-) are used to calibrate the calculated CN(-) and CO frequencies against the measured FTIR bands in these model compounds. By comparing the predicted CN(-) and CO frequencies from DFT frequency calculations on the active site model with the observed bands of D. vulgaris [Fe]-hydrogenase under various conditions, the oxidation states and structures for the diiron active site are proposed. The fully oxidized, EPR-silent form is an Fe(II)-Fe(II) species. Coordination of H(2)O to the empty site in the enzyme's diiron active center results in an oxidized inactive form (H(2)O)Fe(II)-Fe(II). The calculations show that reduction of this inactive form releases the H(2)O to provide an open coordination site for H(2). The partially oxidized active state, which has an S = (1)/(2) EPR signal, is an Fe(I)-Fe(II) species. Fe(I)-Fe(I) species with and without bridging CO account for the fully reduced, EPR-silent state. For this fully reduced state, the species without the bridging CO is slightly more stable than the structure with the bridging CO. The correlation coefficient between the predicted CN(-) and CO frequencies for the proposed model species and the measured CN(-) and CO frequencies in the enzyme is 0.964. The proposed species are also consistent with the EPR, ENDOR, and M?ssbauer spectroscopies for the enzyme states. Our results preclude the presence of Fe(III)-Fe(II) or Fe(III)-Fe(III) states among those observed by FTIR. A proposed reaction mechanism (catalytic cycle) based on the DFT calculations shows that heterolytic cleavage of H(2) can occur from (eta(2)-H(2))Fe(II)-Fe(II) via a proton transfer to "spectator" ligands. Proton transfer to a CN(-) ligand is thermodynamically favored but kinetically unfavorable over proton transfer to the bridging S of the PDT. Proton migration from a metal hydride to a base (S, CN, or basic protein site) results in a two-electron reduction at the metals and explains in part the active site's dimetal requirement and ligand framework which supports low-oxidation-state metals. The calculations also suggest that species with a protonated Fe-Fe bond could be involved if the protein could accommodate such species.  相似文献   

18.
Dinuclear iron(II)-cyanocarbonyl complex [PPN](2)[Fe(CN)(2)(CO)(2)(mu-SEt)](2) (1) was prepared by the reaction of [PPN][FeBr(CN)(2)(CO)(3)] and [Na][SEt] in THF at ambient temperature. Reaction of complex 1 with [PPN][SEt] produced the triply thiolate-bridged dinuclear Fe(II) complex [PPN][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)] (2) with the torsion angle of two CN(-) groups (C(5)N(2) and C(3)N(1)) being 126.9 degrees. The extrusion of two sigma-donor CN(-) ligands from Fe(II)Fe(II) centers of complex 1 as a result of the reaction of complex 1 and [PPN][SEt] reflects the electron-rich character of the dinuclear iron(II) when ligated by the third bridging ethylthiolate. The Fe-S distances (2.338(2) and 2.320(3) A for complexes 1 and 2, respectively) do not change significantly, but the Fe(II)-Fe(II) distance contracts from 3.505 A in complex 1 to 3.073 A in complex 2. The considerably longer Fe(II)-Fe(II) distance of 3.073 A in complex 2, compared to the reported Fe-Fe distances of 2.6/2.62 A in DdHase and CpHase, was attributed to the presence of the third bridging ethylthiolate, instead of pi-accepting CO-bridged ligand as observed in [Fe] hydrogenases. Additionally, in a compound of unusual composition ([Na.(5)/(2)H(2)O][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)])(n)((1)/(2)O(Et)(2))(n) (3), the Na(+) cations and H(2)O molecules combining with dinuclear [(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)](-) anions create a polymeric framework wherein two CN(-) ligands are coordinated via CN(-)-Na(+)/CN(-)-(Na(+))(2) linkages, respectively.  相似文献   

19.
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and M?ssbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.  相似文献   

20.
A series of mononuclear iron(II) and zinc(II) complexes of the new chiral Py(ProMe)2 ligand (Py(ProMe)2 = 2,6-bis[[(S)-2-(methyloxycarbonyl)-1-pyrrolidinyl]methyl]pyridine) have been prepared. The molecular geometry in the solid state (X-ray crystal structures) of the complexes [FeCl2(Py(ProMe)2)] (1), [ZnCl2(Py(ProMe)2)] (2), [Fe(OTf)2(Py(ProMe)2)] (3), [Fe(Py(ProMe)2)(OH2)2](OTf)2 (4), and [Zn(OTf)(Py(ProMe)2)](OTf) (5) are reported. They all show a meridional NN'N coordination of the Py(ProMe)2 ligand. The bis-chloride derivatives 1 and 2 represent neutral isostructural five-coordinated complexes with a distorted geometry around the metal center. Unusual seven-coordinate iron(II) complexes 3 and 4 having a pentagonal bipyramidal geometry were obtained using weakly coordinating triflate anions. The reaction of Zn(OTf)2 with the Py(ProMe)2 ligand afforded complex 5 with a distorted octahedral geometry around the zinc center. All complexes were formed as single diastereoisomers. In the case of complexes 3-5, the oxygen atoms of both carbonyl groups of the ligand are also coordinated to the metal. The stereochemistry of the coordinated tertiary amine donors in complexes 3-5 is of opposite configuration as in complexes 1 and 2 as a result of the planar penta-coordination of the ligand Py(ProMe)2. Complexes 1, 2, and 5 have an overall -configuration at their metal center, while the Fe(II) ion in complexes 3 and 4 has the opposite delta-configuration (crystal structures and CD measurements). The magnetic moments of iron complexes 1, 3, and 4 correspond to that of high-spin d6 Fe(II) complexes. The solution structures of complexes 1-5 were characterized by means of UV-vis, IR, conductivity, and CD measurements and their electrochemical behavior. These studies showed that the coordination environment of 1 and 2 observed in the solid state is maintained in solution. In coordinating solvents, the triflate anion (3, 5) or water (4) co-ligands of complexes 3-5 are replaced by solvent molecules with retention of the original pentagonal bipyramidal and octahedral geometry, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号