首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

2.
The photoelectron spectra of the structural isomers of the three- and four-carbon enolate anions, n-C3H5O(-), i-C3H5O(-), n-C4H7O(-), s-C4H7O(-), and i-C4H7O(-) have been measured at 355 nm. Both the X(2A' ') ground and A(2A') first excited states of the corresponding radicals were accessed from the X(1A') ground state of the enolate anions. The separation energies of the ground and first excited states (T0) were determined: T0[(E)-n-C3H5O] = 1.19 +/- 0.02 eV, T0[(Z)-n-C3H5O] = 0.99 +/- 0.02 eV, T0[i-C3H5O] = 1.01 +/- 0.02 eV, T0[n-C4H7O] = 1.19 +/- 0.02 eV, T0[(2,3)-s-C4H7O] = 1.25 +/- 0.02 eV, T0[(1,2)-s-C4H7O] = 0.98 +/- 0.02 eV, and T0[i-C4H7O] = 1.36 +/- 0.02 eV. The effects of alkyl substitution on the vibronic structure and energetics previously observed in the vinoxy radical are discussed. The X(1A')-X(2A' ') relative stability is strongly influenced by substitution whereas the X(1A')-A(2A') relative stability remains nearly constant for all of the observed structural isomers. Alkyl substitution at the carbonyl carbon affects vibronic structure more profoundly than the energetics, while the converse is observed upon alkyl substitution at the alpha carbon.  相似文献   

3.
The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(2Pi1/2) selectively relative to the TeH(2Pi3/2) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large R(H-TeH) and correlates to H+TeH(2Pi1/2). Note that the 2Pi1/2 state is analogous to the 2P1/2 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A", with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, 2Pi1/2 has a higher degree of spherical symmetry than does 2Pi3/2 (recall that I(2P1/2) is spherically symmetric), and consequently 2Pi1/2 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'<--X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at approximately 240 nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A" surface. The 4A"<--X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is observed at 266 and 355 nm, and the corresponding spectral features are assigned. Analyses of the c.m. translational energy distributions yield bond dissociation energies D0. For H2Te and TeH, these are 65.0+/-0.1 and 63.8+/-0.4 kcalmol, respectively, in good agreement with predictions that use high-level relativistic theory.  相似文献   

4.
Model compounds have been found to structurally mimic the catalytic hydrogen-producing active site of Fe-Fe hydrogenases and are being explored as functional models. The time-dependent behavior of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) and Fe(2)(μ-S(2)C(2)H(4))(CO)(6) is reviewed and new ultrafast UV- and visible-excitation/IR-probe measurements of the carbonyl stretching region are presented. Ground-state and excited-state electronic and vibrational properties of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) were studied with density functional theory (DFT) calculations. For Fe(2)(μ-S(2)C(3)H(6))(CO)(6) excited with 266 nm, long-lived signals (τ = 3.7 ± 0.26 μs) are assigned to loss of a CO ligand. For 355 and 532 nm excitation, short-lived (τ = 150 ± 17 ps) bands are observed in addition to CO-loss product. Short-lived transient absorption intensities are smaller for 355 nm and much larger for 532 nm excitation and are assigned to a short-lived photoproduct resulting from excited electronic state structural reorganization of the Fe-Fe bond. Because these molecules are tethered by bridging disulfur ligands, this extended di-iron bond relaxes during the excited state decay. Interestingly, and perhaps fortuitously, the time-dependent DFT-optimized exited-state geometry of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) with a semibridging CO is reminiscent of the geometry of the Fe(2)S(2) subcluster of the active site observed in Fe-Fe hydrogenase X-ray crystal structures. We suggest these wavelength-dependent excitation dynamics could significantly alter potential mechanisms for light-driven catalysis.  相似文献   

5.
We report photoelectron images and spectra of deprotonated thiophene, C(4)H(3)S(-), obtained at 266, 355, and 390 nm. Photodetachment of the α isomer of the anion is observed, and the photoelectron bands are assigned to the ground X(2)A(') (σ) and excited A(2)A(") and B(2)A(") (π) states of the thiophenyl radical. The photoelectron angular distributions are consistent with photodetachment from the respective in-plane (σ) and out-of-plane (π(?)) orbitals. The adiabatic electron affinity of α-(●)C(4)H(3)S is determined to be 2.05 ± 0.08 eV, while the B(2)A(") term energy is estimated at 1.6 ± 0.1 eV. Using the measured electron affinity and the electron affinity/acidity thermodynamic cycle, the C-H(α) bond dissociation energy of thiophene is calculated as DH(298)(H(α)-C(4)H(3)S) = 115 ± 3 kcal/mol. Comparison of this value to other, previously reported C-H bond dissociation energies, in particular for benzene and furan, sheds light of the relative thermodynamic stabilities of the corresponding radicals. In addition, the 266 nm photoelectron image and spectrum of the furanide anion, C(4)H(3)O(-), reveal a previously unobserved vibrationally resolved band, assigned to the B(2)A(") excited state of the furanyl radical, (●)C(4)H(3)O. The observed band origin corresponds to a 2.53 ± 0.01 eV B(2)A(") term energy, while the resolved vibrational progression (853 ± 42 cm(-1)) is assigned to an in-plane ring mode of α-(●)C(4)H(3)O (B(2)A(")).  相似文献   

6.
By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH(3)COCN) at 308 nm. The S(1)(A(")), (1)(n(O), π(?) (CO)) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10(-12) cm(3) molecule(-1) s(-1). The measurements of O(2) dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ∕mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH(2)CO, in which the CH(2)CO moiety may further undergo secondary dissociation to release CO. The production of CO(2) in the reaction with O(2) confirms existence of CH(2) and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH(3) fragments that dominate the dissociation products at 193 nm are not detected.  相似文献   

7.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

8.
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O(3) reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O(2)(A (3)Sigma(u) (+) and A' (3)Delta(u)) with atomic hydrogen H((2)S) to produce the ground state products OH((2)Pi)+O((3)P). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O(2)(A' (3)Delta)+H and a (4)Sigma(+) potential surface from O(2)(A (3)Sigma(u) (+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.  相似文献   

9.
Anion photoelectron spectra of Ga(2)N(-) were measured at photodetachment wavelengths of 416 nm(2.978 eV), 355 nm(3.493 eV), and 266 nm(4.661 eV). Both field-free time-of-flight and velocity-map imaging methods were used to collect the data. The field-free time-of-flight data provided better resolution of the features, while the velocity-map-imaging data provided more accurate anisotropy parameters for the peaks. Transitions from the ground electronic state of the anion to two electronic states of the neutral were observed and analyzed with the aid of electronic structure calculations and Franck-Condon simulations. The ground-state band was assigned to a transition between linear ground states of Ga(2)N(-)(X (1)Sigma(g) (+)) and Ga(2)N(X (2)Sigma(u) (+)), yielding the electron affinity of Ga(2)N, 2.506+/-0.008 eV. Vibrationally resolved features in the ground-state band were assigned to symmetric and antisymmetric stretch modes of Ga(2)N, with the latter allowed by vibronic coupling to an excited electronic state. The energy of the observed excited neutral state agrees with that calculated for the A (2)Pi(u) state, but the congested nature of this band in the photoelectron spectrum is more consistent with a transition to a bent neutral state.  相似文献   

10.
The mechanism and spectral dependence of the quantum yield of singlet oxygen O(2)(a (1)Δ(g)) photogenerated by UV radiation in gaseous oxygen at elevated pressure (32-130 bar) have been experimentally investigated within the 238-285 nm spectral region overlapping the range of the Wulf bands in the absorption spectrum of oxygen. The dominant channel of singlet oxygen generation with measured quantum yield up to about 2 is attributed to the one-quantum absorption by the encounter complexes O(2)-O(2). This absorption gives rise to oxygen in the Herzberg III state O(2)(A' (3)Δ(u)), which is assumed to be responsible for singlet oxygen production in the relaxation process O(2)(A' (3)Δ(u), υ) + O(2)(X (3)Σ(g)(-)) → O(2)({a (1)Δ(g)}, {b (1)Σ(g)(+)}) + O(2)({a (1)Δ(g), υ = 0}, {b (1)Σ(g)(+), υ = 0}) with further collisional relaxation of b to a state. This mechanism is deduced from the analysis of the avoiding crossing locations on the potential energy surface of colliding O(2)-O(2) pair. The observed drop of the O(2)(a (1)Δ(g)) yield near spectral threshold for O(2) dissociation is explained by the competition between above relaxation and reaction giving rise to O(3) + O (O + O + O(2)) supposed in literature. The quantum yield of O(2)(a (1)Δ(g)) formation from encounter complex N(2)-O(2) measured at λ = 266 nm was found to be the same as that for O(2)-O(2).  相似文献   

11.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the manganocene ion, Cp(2)Mn(+) (Cp = eta(5)-cyclopentadienyl). The Cp loss reaction was found to be extremely slow over a large ion internal energy range. By simulating the measured asymmetric time-of-flight peak shapes and breakdown diagram, the 0 K thermochemical dissociation limit for CpMn(+) production was determined to be 9.55 +/- 0.15 eV. A CpMn(+)-Cp bond energy of 3.43 eV was obtained by combining this CpMn(+) + Cp dissociation limit with the Cp(2)Mn adiabatic ionization energy of 6.12 +/- 0.07 eV. Combining the measured onset with known heats of formation of Cp and Mn(+), the Cp-Mn(+) bond energy was determined to be 3.38 +/- 0.15 eV. These results lead to 298 K heats of formation of Cp(2)Mn(+) and CpMn(+) of 863 +/- 7 and 935 +/- 16 kJ/mol, respectively. Finally, by combining these results with a previous measurement of the CpMn(CO)(3) --> CpMn(+) + 3CO + e(-) dissociation limit, we arrive at a new value for Delta(f)H degrees (298K)(CpMn(CO)(3)) of -424 +/- 17 kJ/mol.  相似文献   

12.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

13.
Ionization dynamics of a water dimer have been investigated by means of a direct ab initio molecular dynamics (MD) method. Two electronic state potential energy surfaces of (H(2)O)(2)(+) (ground and first excited states, (2)A' and (2)A') were examined as cationic states of (H(2)O)(2)(+). Three intermediate complexes were found as product channels. One is a proton transfer channel where a proton of H(2)O(+) is transferred into the H(2)O and then a complex composed of H(3)O(+)(OH) was formed. The second is a face-to-face complex channel denoted by (H(2)O-OH(2))(+) where the oxygen-oxygen atoms directly bind each other. Both water molecules are equivalent to each other. The third one is a dynamical complex where H(2)O(+) and H(2)O interact weakly and vibrate largely with a large intermolecular amplitude motion. The dynamics calculations showed that in the ionization to the (2)A' state, a proton transfer complex H(3)O(+)(OH) is only formed as a long-lived complex. On the other hand, in the ionization to the (2)A' state, two complexes, the face-to-face and dynamical complexes, were found as product channels. The proton of H(2)O(+) was transferred to H(2)O within 25-50 fs at the (2)A' state, meaning that the proton transfer on the ground state is a very fast process. On the other hand, the decay process on the first excited state is a slow process due to the molecular rotation. The mechanism of the ionization dynamics of (H(2)O)(2) was discussed on the basis of theoretical results.  相似文献   

14.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the cyclopentadienyl manganese tricarbonyl ion, CpMn(CO)(3)(+). The ionization energy of CpMn(CO)(3) was measured from the threshold photoelectron spectrum to be 7.69 +/- 0.02 eV. The dissociation of the CpMn(CO)(3)(+) ion proceeds by the sequential loss of three CO molecules. The first and third CO loss reactions were observed to be slow (lifetimes in the microsecond range). By simulating the resulting asymmetric time-of-flight peak shapes and breakdown diagram, 0 K onsets for three product ions were determined to be 8.80 +/- 0.04, 9.43 +/- 0.04, and 10.51 +/- 0.06 eV, respectively. Combined with the adiabatic ionization energy, the three successive Mn-CO bond energies in the CpMn(CO)(3)(+) were found to be alternating with values of 1.11 +/- 0.04, 0.63 +/- 0.04, and 1.08 +/- 0.06 eV, respectively. Using a scaled theoretical Cp-Mn(+) bond energy of 3.10 +/- 0.10 eV and the combined results from theory and experiment, the 298 K gas-phase heat of formation of CpMn(CO)(3) is suggested to be -419 +/- 15 kJ/mol. Based on this value, the 298 K heats of formation of CpMn(CO)(3)(+), CpMn(CO)(2)(+), CpMnCO(+), and CpMn(+) are 325 +/- 15, 546 +/- 15, 719 +/- 15, and 938 +/- 15 kJ/mol, respectively. By scaling theoretical calculated neutral bond energies with the experimental information derived in this study, the successive Mn-CO bond energies were estimated to be 1.88, 1.10, and 1.03 eV, respectively, while the Cp-Mn bond energy was found to be 2.16 eV. Comparison between the quantum chemical calculations and experimental values shows that the loss of CO groups follows the lowest energy adiabatic path, in which electronic spin on the metal center is not conserved.  相似文献   

15.
Photodissociation studies of the CH2OD radical in the region 28,000-41,000 cm(-1) (357-244 nm), which includes excitation to the 3s, 3p(x), and 3p(z) states, are reported. H and D photofragments are monitored by using resonance-enhanced multiphoton ionization (REMPI) from the onset of H formation at approximately 30,500 cm(-1) to the origin band region of the 3pz(2A")<--1 2A" transition at 41,050 cm(-1). Kinetic energy distributions P(ET) and recoil anisotropy parameters as a function of kinetic energy, beta(eff)(ET), are determined by the core sampling technique for the channels producing H and D fragments. Two dissociation channels are identified: (I) D+CH2O and (II) H+CHOD. The contribution of channel II increases monotonically as the excitation energy is increased. Based on the calculations of Hoffmann and Yarkony [J. Chem. Phys. 116, 8300 (2002)], it is concluded that conical intersections between 3s and the ground state determine the final branching ratio even when initial excitation accesses the 3px) and 3pz states. The different beta(eff) values obtained for channels I and II (-0.7 and approximately 0.0, respectively) are attributed to the different extents of out-of-plane nuclear motions in the specific couplings between 3s and the ground state (of A' and A' symmetry, respectively) that lead to each channel. The upper limit to the dissociation energy of the C-H bond, determined from P(ET), is D0(C-H)=3.4+/-0.1 eV (79+/-2 kcal/mol). Combining this value with the known heats of formation of H and CH2OD, the heat of formation of CHOD is estimated at DeltaHf(0)(CHOD)=24+/-2 kcal/mol.  相似文献   

16.
The microsolvation of cobalt and nickel dications by acetonitrile and water is studied by measuring photofragment spectra at 355, 532 and 560-660 nm. Ions are produced by electrospray, thermalized in an ion trap and mass selected by time of flight. The photodissociation yield, products and their branching ratios depend on the metal, cluster size and composition. Proton transfer is only observed in water-containing clusters and is enhanced with increasing water content. Also, nickel-containing clusters are more likely to undergo charge reduction than those with cobalt. The homogeneous clusters with acetonitrile M(2+)(CH(3)CN)(n) (n = 3 and 4) dissociate by simple solvent loss; n = 2 clusters dissociate by electron transfer. Mixed acetonitrile/water clusters display more interesting dissociation dynamics. Again, larger clusters (n = 3 and 4) show simple solvent loss. Water loss is substantially favored over acetonitrile loss, which is understandable because acetonitrile is a stronger ligand due to its higher dipole moment and polarizability. Proton transfer, forming H(+)(CH(3)CN), is observed as a minor channel for M(2+)(CH(3)CN)(2)(H(2)O)(2) and M(2+)(CH(3)CN)(2)(H(2)O) but is not seen in M(2+)(CH(3)CN)(3)(H(2)O). Studies of deuterated clusters confirm that water acts as the proton donor. We previously observed proton loss as the major channel for photolysis of M(2+)(H(2)O)(4). Measurements of the photodissociation yield reveal that four-coordinate Co(2+) clusters dissociate more readily than Ni(2+) clusters whereas for the three-coordinate clusters, dissociation is more efficient for Ni(2+) clusters. For the two-coordinate clusters, dissociation is via electron transfer and the yield is low for both metals. Calculations of reaction energetics, dissociation barriers, and the positions of excited electronic states complement the experimental work. Proton transfer in photolysis of Co(2+)(CH(3)CN)(2)(H(2)O) is calculated to occur via a (CH(3)CN)Co(2+)-OH(-)-H(+)(NCCH(3)) salt-bridge transition state, reducing kinetic energy release in the dissociation.  相似文献   

17.
We have studied the photodissociation dynamics of expansion-cooled BrO radical both above (278-281.5 nm) and below (355 nm) the A (2)Pi(3/2) state threshold using velocity map ion imaging. A recently developed late-mixing flash pyrolytic reactor source was utilized to generate an intense BrO radical molecular beam. The relative electronic product branching ratios at 355 nm and from 278 to 281.5 nm were determined. We have investigated the excited state dynamics based on both the product branching and the photofragment angular distributions. We find that above the O((1)D(2)) threshold the contribution of the direct excitation to states other than the A (2)Pi(3/2) state and the role of curve crossing is considerably larger in BrO compared to that observed for ClO, in agreement with recent theoretical studies. The measurement of low velocity photofragments resulting from photodissociation just above the O((1)D(2)) threshold provides an accurate and direct determination of the A (2)Pi(3/2) state dissociation threshold of 35418+/-35 cm(-1), leading to a ground state bond energy of D(0)(0)(BrO)=55.9+/-0.1 kcal/mol.  相似文献   

18.
The photoionization of 1-alkenylperoxy radicals, which are peroxy radicals where the OO moiety is bonded to an sp2-hybridized carbon, is studied by experimental and computational methods and compared to the similar alkylperoxy systems. Quantum chemical calculations are presented for the ionization energy and cation stability of several alkenylperoxy radicals. Experimental measurements of 1-cyclopentenylperoxy (1-c-C5H7OO) and propargylperoxy (CH2=C=CHOO) photoionization are presented as examples. These radicals are produced by reaction of an excess of O2 with pulsed-photolytically produced alkenyl radicals. The kinetic behavior of the products confirms the formation of the alkenylperoxy radicals. Electronic structure calculations are employed to give structural parameters and energetics that are used in a Franck-Condon (FC) spectral simulation of the photoionization efficiency (PIE) curves. The calculations also serve to identify the isomeric species probed by the experiment. Adiabatic ionization energies (AIEs) of 1-c-C5H7OO (8.70 +/- 0.05 eV) and CH2=C=CHOO (9.32 +/- 0.05 eV) are derived from fits to the experimental PIE curves. From the fitted FC simulation superimposed on the experimental PIE curves, the splitting between the ground state singlet and excited triplet cation electronic states is also derived for 1-c-C5H7OO (0.76 +/- 0.05 eV) and CH2=C=CHOO (0.80 +/- 0.15 eV). The combination of the AIE(CH2=C=CHOO) and the propargyl heat of formation provides Delta f H(0)(o) (CH2=C=CHOO+) of (1162 +/- 8) kJ mol-1. From Delta f H(0)(o) (CH2=C=CHOO+) and Delta f H (0)(o) (C3H3+) it is also possible to extract the bond energy D(0)(o)(C3H3+-OO) of 19 kJ mol-1 (0.20 eV). Finally, from consideration of the relevant molecular orbitals, the ionization behavior of alkyl- and alkenylperoxy radicals can be generalized with a simple rule: Alkylperoxy radicals dissociatively ionize, with the exception of methylperoxy, whereas alkenylperoxy radicals have stable singlet ground electronic state cations.  相似文献   

19.
A combined experimental and theoretical investigation of photodissociation dynamics of IBr(-) and IBr(-)(CO(2)) on the B ((2)Σ(1/2)(+)) excited electronic state is presented. Time-resolved photoelectron spectroscopy reveals that in bare IBr(-) prompt dissociation forms exclusively I? + Br(-). Compared to earlier dissociation studies of IBr(-) excited to the A' ((2)Π(1∕2)) state, the signal rise is delayed by 200 ± 20 fs. In the case of IBr(-)(CO(2)), the product distribution shows the existence of a second major (~40%) dissociation pathway, Br? + I(-). In contrast to the primary product channel, the signal rise associated with this pathway shows only a 50 ± 20 fs delay. The altered product branching ratio indicates that the presence of one solvent-like CO(2) molecule dramatically affects the electronic structure of the dissociating IBr(-). We explore the origins of this phenomenon with classical trajectories, quantum wave packet studies, and MR-SO-CISD calculations of the six lowest-energy electronic states of IBr(-) and 36 lowest-energy states of IBr. We find that the CO(2) molecule provides sufficient solvation energy to bring the initially excited state close in energy to a lower-lying state. The splitting between these states and the time at which the crossing takes place depend on the location of the solvating CO(2) molecule.  相似文献   

20.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号