首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclinic BiB(3)O(6) is an excellent nonlinear optical material with many advantages compared to other borate crystals. The origins of the optical effects and the chemical stability of BiB(3)O(6) are studied with gradient-corrected hybrid B3PW density functional theory within the Gaussian-orbital-based CO-LCAO scheme. Including spin-orbit coupling, the B3PW hybrid functional provides an estimate of the indirect band gap of 4.29-4.99 eV closer to the experimental value of 4.3 eV than HF, LDA, or GGA. The crystal orbital overlap population to give a detailed first-principles analysis of chemical bonding and the density of optical absorptions by convoluting the occupied density of states and the virtual density of states have been calculated. Obvious Bi-O covalent bonds have been found with different energy ranges for 6s-2p and 6p-2p interactions. The reason that [BiO(4)](5-) units are mainly responsible for the optics of BiB(3)O(6) in the long-wavelength region is due to the electronic transfer from occupied O 2p to empty Bi 6p orbitals favored by the Bi-O covalent bonds. The relativistic and correlation effects lead to fundamental differences of the band structure, chemical bonds, and optical effects for BiB(3)O(6) compared with nonrelativistic and uncorrelated calculations.  相似文献   

2.
Three ternary oxides, SnWO4, PbWO4, and BiVO4, containing p-block cations with ns2np0 electron configurations, so-called lone pair cations, have been studied theoretically using density functional theory and UV-visible diffuse reflectance spectroscopy. The computations reveal significant differences in the underlying electronic structures that are responsible for the varied crystal chemistry of the lone pair cations. The filled 5s orbitals of the Sn2+ ion interact strongly with the 2p orbitals of oxygen, which leads to a significant destabilization of symmetric structures (scheelite and zircon) favored by electrostatic forces. The destabilizing effect of this interaction can be significantly reduced by lowering the symmetry of the Sn2+ site to enable the antibonding Sn 5s-O 2p states to mix with the unfilled Sn 5p orbitals. This interaction produces a localized, nonbonding state at the top of the valence band that corresponds closely with the classical notion of a stereoactive electron lone pair. In compounds containing Pb2+ and Bi3+ the relativistic contraction of the 6s orbital reduces its interaction with oxygen, effectively diminishing its role in shaping the crystal chemical preferences of these ions. In PbWO4 this leads to a stabilization of the symmetric scheelite structure. In the case of BiVO4 the energy of the Bi 6s orbital is further stabilized. Despite this stabilization, the driving force for a stereoactive lone pair distortion appears to be enhanced. The energies of structures exhibiting distorted Bi3+ environments are competitive with structures that possess symmetric Bi3+ environments. Nevertheless, the "lone pair" that results associated with a distorted Bi3+ environment in BiVO4 is more diffuse than the Sn2+ lone pair in beta-SnWO4. Furthermore, the distortion has a much smaller impact on the electronic structure near the Fermi level.  相似文献   

3.
We synthesized a novel perovskite-type oxide, HgSnO3, under high pressure and high temperature, and investigated the crystal and electronic structures as well as the transport properties. It was found that HgSnO3 possesses a trigonal-hexagonal lattice with space group R3c. The band gap of HgSnO3 estimated by diffuse reflectance spectrum measurement is relatively small (1.6 eV), irrespective of the large octahedral tilting distortion. The small band gap is caused by the increase in the bandwidth of the conduction and valence bands due to mixing between the empty Hg 6s orbitals and the antibonding Sn 5s-O 2p states and the mixing between the filled Hg 5d orbitals and the O 2p states, respectively. The electronic resistivity, Seebeck coefficient, and Hall coefficient measurements indicate that as-synthesized HgSnO3 is an n-type semiconductor.  相似文献   

4.
Experimental and computational studies were performed to understand the electronic structure of ternary perovskites (ASnO(3), A = Ca, Sr, Ba, Cd), pyrochlores (RE(2)Sn(2)O(7), RE = Y, La, Lu; Cd(2)Sb(2)O(7)), and defect pyrochlore oxides (Ag(2)Sb(2)O(6)) containing the main group ions Sn(4+) and Sb(5+). In all compounds, the lowest energy states in the conduction band arise primarily from the antibonding Sn/Sb 5s-O 2p interaction. In the alkaline-earth stannate perovskites (BaSnO(3), SrSnO(3), and CaSnO(3)) the conduction bandwidth decreases strongly in response to the octahedral tilting distortion triggered by the decreasing size of the alkaline-earth cation. This in turn leads to a corresponding increase in the band gap from 3.1 eV in BaSnO(3) to 4.4 eV in CaSnO(3). The band gap of CdSnO(3) is relatively small (3.0 eV) considering the large octahedral tilting distortion. The origin of this apparent anomaly is the mixing between the empty Cd 5s orbitals and the antibonding Sn 5s-O 2p states. This mixing leads to a widening of the conduction band and a corresponding decrease in the band gap. The participation of the normally inert A-site cation in the electronic structure near the Fermi level can be considered an inductive effect, as it utilizes substitution on the A-site to directly modify the electronic structure of the SnO(3)(2)(-) framework. While the pyrochlore structure is more complicated, the energy level and width of the lowest energy conduction band can be analyzed in a manner similar to that utilized on the perovskite structure. The Sn-O-Sn and Sb-O-Sb bonds are highly distorted from linear geometry in pyrochlore, leading to a relatively narrow conduction band and a wide band gap. In Cd(2)Sb(2)O(7) and Ag(2)Sb(2)O(6) the Cd(2+) and Ag(+) ions exhibit a strong inductive effect that widens the conduction band and lowers the band gap significantly, very similar to the effect observed in the perovskite form of CdSnO(3).  相似文献   

5.
总结了无机硼酸盐二阶非线性光学晶体材料的结构特征,即无中心对称性和阴离子基团的π共轭类芳香性结构;讨论了阴离子基团理论处理实际体系时遇到的困难及其假设中的不尽合理之处。以BBO(低温相偏硼酸钡β-BaB2O4)和LBO(三硼酸或LiB3O5)晶体为例,从含组态作用的INDO/S记结合态求和方法计算得到的结果分析后表明,BBO和LBO的价带具有相同的原子轨道组成,导带的底部,在BBO中主要是Ba原子轨道的贡献;在LBO中主要是(B3O5)-基团的贡献。前者对二阶极化率的贡献主要来自环外O原子的2p轨道到Ba原子的电荷转移,而后者的贡献则主要来自[B-O]阴离子基团内的电荷转移.计算得到的BBO和LBO的价带和导带间的电子跃迁能分别是6.28eV和7.26eV,相当好地接近于紫外吸收边的测量值6.43eV和7.78eV,最大的二阶非线性极化系数Xyyy(7.18X10-9esu)和Xzyy(2.38X10-9esu)相当接近实验测量值d22(5.30X10-9esu)和d32(2.79X10-9esu)。  相似文献   

6.
When doped with oxygen, the layered Y2O2Bi phase becomes a superconductor. This finding raises questions about the sites for doped oxygen, the mechanism of superconductivity, and practical guidelines for discovering new superconductors. We probed these questions in terms of first‐principles calculations for undoped and O‐doped Y2O2Bi. The preferred sites for doped O atoms are the centers of Bi4 squares in the Bi square net. Several Bi 6p x /y bands of Y2O2Bi are raised in energy by oxygen doping because the 2p x /y orbitals of the doped oxygen make antibonding possible with the 6p x /y orbitals of surrounding Bi atoms. Consequently, the condition necessary for the “flat/steep” band model for superconductivity is satisfied in O‐doped Y2O2Bi.  相似文献   

7.
The intermolecular non-covalent interactions in aminonitromethylbenzenes namely 2-methyl-4-nitroaniline, 4-methyl-3-nitroaniline, 2-methyl-6-nitroaniline, 4-amino-2,6-dinitrotoluene, 2-methyl-5-nitroaniline, 4-methyl-2-nitroaniline, 2,3-dimethyl-6-nitroaniline, 4,5-dimethyl-2-nitroaniline and 2-methyl-3,5-dinitroaniline were studied by quantum mechanical calculations at RHF/311++G(3df,2p) and B3LYP/311++G(3df,2p) level of theory. The calculations prove that solely geometrical study of hydrogen bonding can be very misleading because not all short distances (classified as hydrogen bonds on the basis of interaction geometry) are bonding in character. For studied compounds interaction energy ranges from 0.23 kcal mol−1 to 5.59 kcal mol−1. The creation of intermolecular hydrogen bonds leads to charge redistribution in donors and acceptors. The Natural Bonding Orbitals analysis shows that hydrogen bonds are created by transfer of electron density from the lone pair orbitals of the H-bond acceptor to the antibonding molecular orbitals of the H-bond donor and Rydberg orbitals of the hydrogen atom. The stacking interactions are the interactions of delocalized molecular π-orbitals of the one molecule with delocalized antibonding molecular π-orbitals and the antibonding molecular σ-orbital created between the carbon atoms of the second aromatic ring and vice versa.   相似文献   

8.
钙钛石(ABO3)型复杂氧化物由于A位、B位在适当范围内掺杂其他离子而成为性能宽广的功能材料.例如BaPbO3及其取代物BaPbBiO是甲烷偶联反应的催化剂[1],BaPbBiO[2]和BaKBiO[3]还具有超导性.另一方面,这些复杂氧化物的功能又?..  相似文献   

9.
The CNDO/2 and INDO calculations were performed on s-triazine and s-tetrazine. The s-triazine has three lone-pairs in a molecule, and these can be combined into three combinations, A, ns and nA. Among the three, ns and nA are degenerated when the whole interaction conserves its molecular point symmetry, D3h. The s-tetrazine has four lone-pairs, which can be transformed into four combinations, SS,SA, AS and AA. The energies of these orbitals show interesting behavior. The results were subjected to an analysis from the standpoint of the through-space and through-bond interactions using the localized molecular orbitals. As a result of these analyses, the interactions were expressed by several interaction terms.  相似文献   

10.
The optical absorption spectra of the delocalized intervalence radical cations of seven o,o'-linked benzidine derivatives that have the nitrogens protected as 9-(9-aza-bicyclo[3.3.1]nonan-3-one) derivatives are discussed and compared with that of the p-phenylene radical cation. The linking units are CH2, CH2CH2, NMe, S, SO2, and C=O, and we also studied H,H (the unlinked benzidine). The lowest-energy absorption band is assigned as the transition from the antibonding combination of symmetrical N and aromatic orbitals to the antibonding combination of the antisymmetric N and aromatic orbitals using TD-DFT calculations, and a good correlation between the observed transition energies and those calculated using the simple Koopmans theorem-based "neutral in-cation geometry" calculations on the UB3LYP/6-31G* structures is found. The use of the two-state model that equates the electronic interaction through the bridge between the amino groups with half of the lowest transition energy is seriously incorrect for these and other delocalized intervalence compounds. The problem of extracting the electronic interactions that actually are involved from calculated transition energies is discussed.  相似文献   

11.
A rationalization of the known difference between the 3,4JC4H1 and 3,4JC1H4 couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies of 3,4JCH couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*(C2=O) and sigma*(C2=O) antibonding orbitals produce a decrease of three-bond contribution to both 3,4JC4H1 and 3,4JC1H4 couplings. However, the latter antibonding orbital also undergoes a strong sigmaC3--C4 --> sigma*(C2=O) interaction, which defines an additional coupling pathway for 3,4JC4H1 but not for 3,4JC1H4. This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for 3,4JC4H1 it is of sigma*-type, while in homoallylic couplings it is of pi*-type.  相似文献   

12.
Aurivillius structure Bi(2)MoO(6) (BG: 2.70 eV) that is a low-temperature phase showed an intense absorption band in the visible light region and photocatalytic activity for O(2) evolution from an aqueous silver nitrate solution under visible light irradiation, among various bismuth molybdates (Bi(2)MoO(6), Bi(2)Mo(2)O(9), and Bi(2)Mo(3)O(12)) synthesized by solid-state and reflux reactions. Bi(2)Mo(3)O(12) (BG: 2.88 eV) also showed photocatalytic activity for O(2) evolution under full-arc irradiation of a Xe lamp (lambda > 300 nm). The photocatalytic activity of the Aurivillius structure Bi(2)MoO(6) prepared by the reflux method was dependent on the annealing temperature after the preparation. The crystallinity was the important factor for the activity. Calculation by the density functional method indicated that the conduction band of Aurivillius structure Bi(2)MoO(6) was made up of Mo 4d orbitals. It turned out that the visible-light absorption of this photocatalyst was due to the transition from the valence band consisting of O 2p orbitals to the conduction band. The corner-sharing structure of the MoO(6) octahedra contributed to the visible light response and the photocatalytic performance because excitation energy and/or photogenerated electron and hole pairs began to migrate easily in the Aurivillius structure.  相似文献   

13.
14.
The interaction of oxygen with alkalis (Na, K) on Ni(111) was studied by high-resolution electron energy loss spectroscopy. Loss measurements revealed for the first time a softening of the O-Ni bond and, simultaneously, a strengthening of the alkali-Ni bond in the alkali+O coadsorbed phase, in perfect agreement with recent theoretical calculations. The weakening of the O-Ni bond was ascribed to the alkali-induced filling of the O 2p(z) antibonding orbitals. Different physical mechanisms were discussed for explaining the strengthening of the alkali-substrate bond whenever alkalis are coadsorbed with O adatoms.  相似文献   

15.
Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6   总被引:7,自引:0,他引:7  
Visible-light-induced photodegradation of rhodamine B over nanosized Bi2WO6 has been observed. Bi2WO6 exhibited a high photoactivity to photodegrade rhodamine B in the central pH solution under visible irradiation (lambda > 420 nm). After five recycles for the photodegradation of rhodamine B, the catalyst did not exhibit any significant loss of activity, confirming the photocatalyst is essentially stable. The total organic carbon measurement displayed that a high degree of mineralization was achieved in the present photochemical system. The results of density functional theory calculation illuminated that the visible-light absorption band in the Bi2WO6 catalyst is attributed to the band transition from the hybrid orbitals of Bi6s and O2p to the W5d orbitals. The Bi2WO6-assisted photocatalytic degradation of rhodamine occurs via two competitive processes: a photocatalytic process and a photosensitized process. The transformation of rhodamine is mainly via the photocatalytic process. Kinetic studies by using electron spin resonance and the radical scavenger technologies suggest that *OH is not the dominant photooxidant. Direct hole transfers and O2*- could take part in Bi2WO6 photocatalysis. This study provided a possible treatment approach for organic pollutants by using visible light in aqueous ecosystems.  相似文献   

16.
密度泛函理论(DFT)计算对掺杂体系新型环境光催化剂设计开发具有指导意义.基于DFT框架下的第一性原理平面波超软赝势方法(USPP),对α、β、γ、δ-Bi2O3晶体几何结构分别进行了优化计算,从理论上得到了Bi2O3的总体态密度(TDOS)和Bi、O原子的分波态密度(PDOS).在此基础上对Bi2O3超晶胞进行Ti(IV)的掺杂计算,讨论了Ti(IV)掺杂对各种Bi2O3的电子结构和光吸收特性的影响.结果表明Ti(IV)掺杂Bi2O3晶体后,Ti(IV)的3d轨道进入禁带并与O2p、Bi6p轨道作用,使禁带宽度(Eg)变小,Bi2O3的吸收边红移,从而有助于Bi2O3光催化活性的改善.通过水热合成法制备的Ti(IV)掺杂Bi2O3样品的紫外-可见光漫反射光谱验证了计算的结果.在光催化降解有机染料结晶紫的实验中,光催化剂活性的改善进一步得到证实.  相似文献   

17.
We have isolated and structurally characterized a terminal iron nitrido complex supported by a bulky tris(carbene)borate ligand. The electronic structure of this complex reveals that the a1 LUMO (formerly Fe(dz2)) is strongly stabilized by reduced antibonding interactions with the carbene sigma-donor ligands and configurational mixing (hybridization) with higher lying Fe 4s and 4p atomic orbitals. This unusual bonding interaction results in a low-lying Fe nitrido acceptor orbital (LUMO) that possesses electrophilic character. Reaction with PPh3 results in nitrogen atom transfer to the phosphine, supporting a reaction mechanism involving nucleophilic attack of the triphenylphosphine HOMO at the electrophilic LUMO of the iron nitrido complex.  相似文献   

18.
Conformational preferences and orbital interactions of methyl chloroacetate (1), methyl bromoacetate (2) and methyl iodo-acetate (3) were analyzed using experimental infra-red data, theoretical calculations and NBO analyses. The conformational equilibria of compounds 1-3 can be represented by their cis and gauche rotamers. The gauche form of 1 is stable in the vapour phase and in a non-polar solvent, but the cis is predominant in a polar solvent. For 2 the gauche form is more stable than the cis, in both the vapour and liquid phases, but for compound 3 only the gauche form was observed both in vapour phase as in solution. These conformational preferences were attributed to the orbital interaction between two antibonding orbitals pi(C=O)(*)-->sigma(C-X)(*). This unexpected interaction was possibly due to the high (0.2) electron density on pi(C=O)(*), which results from the interaction between ether oxygen lone pair and pi(C=O)(*).  相似文献   

19.
The hydroxycyclohexadienyl peroxy radicals (HO? C6H6? O2) produced from the reaction of OH‐benzene adduct with O2 were studied with density functional theory (DFT) calculations to determine their characteristics. The optimized geometries, vibrational frequencies, and total energies of 2‐hydroxycyclohexadienyl peroxy radical IIs and 4‐hydroxycyclohexadienyl peroxy radical IIIs were calculated at the following theoretical levels, B3LYP/6‐31G(d), B3LYP/6‐311G(d,p), and B3LYP/6‐311+G(d,p). Both were shown to contain a red‐shifted intramolecular hydrogen bond (O? H … O? H bond). According to atoms‐in‐molecules (AIM) analysis, the intramolecular hydrogen bond in the 2‐hydroxycyclohexadienyl peroxy radical IIs is stronger than that one in 4‐hydroxycyclohexadienyl peroxy radical IIIs, and the former is the most stable conformation among its isomers. Generally speaking, hydrogen bonding in these radicals plays an important role to make them more stable. Based on natural bond orbital (NBO) analysis, the stabilization energy between orbitals is the main factor to produce red‐shifted intramolecular hydrogen bond within these peroxy radicals. The hyperconjugative interactions can promote the transfer of some electron density to the O? H antibonding orbital, while the increased electron density in the O? H antibonding orbital leads to the elongation of the O? H bond and the red shift of the O? H stretching frequency. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
We report a theoretical study of ring systems that delocalize electrons in a cyclic array of p orbitals arranged tangentially in sigma-bonding fashion. Sigma-bonded arrays are compared to conventional pi-bonded analogues with respect to orbital symmetry and aromatic/antiaromatic behavior. In a one-to-one correspondence between pi and tangential molecular orbitals of a cycle, local rotation turns each pi to a tangential basis function, changing bonding interactions to antibonding and inverting the order of filling of molecular orbitals. The ipsocentric ring-current mapping approach is used to evaluate aromaticity on the magnetic criterion. As for conventional pi-ring currents, the sigma-ring current in tangential p-p bonded systems is dominated by the HOMO-LUMO transition, corresponding to circulation of four electrons in diatropic (4n + 2)-electron cycles but two in paratropic (4n)-electron cycles. The systems examined here utilize either C 2p or Si 3p orbitals for delocalization. Although interchangeable with C with respect to the fundamental orbital symmetry and ring-current rules, Si bonds at greater internuclear distances, a feature that allows easier design of potentially stable sigma-aromatic structures. Calculations show the wheel-like Si10C50H70 structure 6 as a stable, neutral aromatic molecule with a diatropic ring current following the sigma-bond path formed by Si 3p orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号