首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[g,h,i]perylene (BghiP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of both the first electronically excited state and the ground cationic state. Extensive vibronic coupling due to a nearby electronically excited state manifests through strong Franck-Condon (FC) forbidden bands, which are stronger than even the FC allowed bands in the REMPI spectrum. Theoretical calculations using Gaussian are problematic in identifying the electronic configurations of the excited electronic states and predicting the transition energies. However, by setting the keyword for the second excited electronic state, both density functional theory and configuration interaction methods can reproduce the observed spectrum qualitatively. The general agreement significantly helps with the vibrational assignment. The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the intermediate electronic state. In addition, almost all ZEKE spectra exhibit a similar vibrational distribution, and the distribution can be reproduced by an FC calculation from the vibronic origin of the first excited electronic state to the cationic state using Gaussian 09. These results suggest a remarkable structural stability of BghiP in accommodating the additional charge. All observed vibrational bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far-infrared bands for astrophysical applications.  相似文献   

2.
Zero kinetic energy (ZEKE) photoelectron spectroscopy of the hydroquinone-water (HQW) complex was carried out to characterize its S(1)-S(0) resonantly enhanced multiphoton ionization (REMPI) spectrum in terms of the cis and trans conformers. The ZEKE spectra of the hydroquinone isomers show differences in the Franck-Condon (FC) activity of a few ring modes, viz., modes 15, 9b, and 6b, due to the different symmetries of the two isomers. These modes were used as a "diagnostic tool" to carry out the categorical assignment of the REMPI spectrum of the HQW complex. It was found that the FC activity of these diagnostic modes in the cationic ground state (D(0)) of the water complex is similar as that of the monomer. The two lowest energy transitions in the REMPI spectrum of the water complex, 33,175 and 33,209 cm(-1), were reassigned as the band origins of the cis and trans hydroquinone-water complexes, which is opposite of the previous assignment. The intermolecular stretching mode (sigma) of the complex shows a long progression, up to v(')=4, in the cationic ground state and is strongly coupled to other observed ring modes. The Franck-Condon factors for different members in the progression were calculated using the potential energy surfaces computed ab initio. These agree well with the observed intensity patterns in the progression. The ionization potential of the trans and cis complexes was determined to be 60,071+/-4 and 60,024+/-4 cm(-1), respectively.  相似文献   

3.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[a]pyrene (BaP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of the first excited state (S(1)) and those of the ground cationic state (D(0)). Similar to pyrene, another peri-condensed polycyclic aromatic hydrocarbon we have investigated, the first two electronically excited states of BaP exhibit extensive configuration interactions. However, the two electronic states are of the same symmetry, hence vibronic coupling does not introduce any out-of-plane modes in the REMPI spectrum, and Franck-Condon analysis is qualitatively satisfactory. The ZEKE spectra from the in-plane modes observed in the REMPI spectrum demonstrate strong propensity in preserving the vibrational excitation of the intermediate state. Although several additional bands in combination with the vibrational mode of the intermediate state are identifiable, they are much lower in intensity. This observation implies that the molecular structure of BaP has a tremendous capability to accommodate changes in charge density. All observed bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far infrared bands for astrophysical applications.  相似文献   

4.
The excited states of CO adsorbed on the Pt(111) surface are studied using a time-dependent density functional theory formalism. To reduce the computational cost, electronic excitations are computed within a reduced single excitation space. Using cluster models of the surface, excitation energies are computed for CO in the on-top, threefold, and bridge binding sites. On adsorption, there is a lowering of the 5sigma orbital energy. This leads to a large blueshift in the 5sigma- -> pi(CO*) excitation energy for all adsorption sites. The 1pi and 4sigma orbital energies are lowered to a lesser extent, and smaller shifts in the corresponding excitation energies are predicted. For the larger clusters, pi* excitations at lower energies are observed. These transitions correspond to excitations to virtual orbitals of pi* character which lie below the pi* orbitals of gas phase CO. These orbitals are associated predominantly with the metal atoms of the cluster. The excitation energies are also found to be sensitive to changes in the adsorption geometry. The electronic spectrum of CO on Pt(111) is simulated and the assignment of the bands observed in experimental electron energy loss spectroscopy discussed.  相似文献   

5.
H(D) Rydberg atom photofragment translational spectroscopy has been used to investigate the dynamics of H(D) atom loss C6H5SH(C6H5SD) following excitation at many wavelengths lambda phot in the range of 225-290 nm. The C6H5S cofragments are formed in both their ground (X(2)B1) and first excited ((2)B2) electronic states, in a distribution of vibrational levels that spreads and shifts to higher internal energies as lambda(phot) is reduced. Excitation at lambda(phot) > 275 nm populates levels of the first (1)pi pi* state, which decay by tunnelling to the dissociative (1)pi sigma* state potential energy surface (PES). S-H torsional motion is identified as a coupling mode facilitating population transfer at the conical intersection (CI) between the diabatic (1)pi pi* and (1)pi sigma* PESs. At shorter lambda(phot), the (1)pi sigma* state is deduced to be populated either directly or by efficient vibronic coupling from higher (1)pipi* states. Flux evolving on the (1)pi sigma* PES samples a second CI, at longer R(S-H), between the diabatic (1)pi sigma* and ground ((1)pi pi) PESs, where the electronic branching between ground and excited state C6H5S fragments is determined. The C6H5S(X(2)B1) and C6H5S((2)B2) products are deduced to be formed in levels with, respectively, a' and a' vibrational symmetry-behavior that reflects both Franck-Condon effects (both in the initial photoexcitation step and in the subsequent in-plane forces acting during dissociation) and the effects of the out-of-plane coupling mode(s), nu11 and nu16a, at the (1)pi sigma*/(1)pi pi CI. The vibrational state assignments enabled by the high-energy resolution of the present data allow new and improved estimations of the bond dissociation energies, D0(C6H5S-H) < or = 28,030 +/- 100 cm(-1) and D0(C6H5S-D) < or = 28,610 +/- 100 cm(-1), and of the energy separation between the X(2)B1 and (2)B2 states of the C6H5S radical, T(00) = 2800 +/- 40 cm(-1). Similarities, and differences, between the measured energy disposals accompanying UV photoinduced X-H (X = S, O) bond fission in thiophenol and phenol are discussed.  相似文献   

6.
The lifetimes of the 3-methylindole-NH3 complex have been measured on different vibronic levels involving intermolecular modes and decrease from 530 to 65 ps, in a mode specific manner. Geometry optimizations of the ground and excited states have been performed with ab initio methods, and as in the case of phenol and indole, a repulsive pi sigma* state lies close to the initially excited pi pi* state. From these calculations, it seems that both in-plane and out-of-plane vibrations induce a faster nonradiative decay.  相似文献   

7.
We report the electronic and vibrational spectroscopy of chrysene using resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. As an isomer of tetracene, chrysene contains a kink in the middle of the four fused hexagonal rings, which complicates not just the symmetry but, more importantly, the molecular orbitals and hence vibronic transitions. Incidentally, the two nearby electronically excited states of chrysene have the same symmetry, and vibronic coupling introduces no out-of-plane vibrational modes. As a result, the REMPI spectrum of chrysene contains essentially only in-plane ring deformation modes, similar to that of tetracene. However, density functional calculations using gaussian even after the inclusion of vibronic coupling can only duplicate the observed REMPI spectrum in a qualitative sense, and the agreement is considerably worse than our recent work on a few pericondensed polycyclic aromatic hydrocarbons and on tetracene. The ZEKE spectrum of chrysene via the origin band of the intermediate electronic state S(1), however, can be qualitatively reproduced by a straightforward Franck-Condon calculation. The ZEKE spectra from vibrationally excited states of the S(1), on the other hand, demonstrate some degree of mode selectivity: the overall intensity of the ZEKE spectrum can vary by an order of magnitude depending on the vibrational mode of the intermediate state. A scaling factor in the theoretical vibrational frequency for the cation is also needed to compare with the experimental result, unlike tetracene and pentacene.  相似文献   

8.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

9.
Ab initio theoretical methods are used to investigate the gas-phase ion pairs of the ionic liquid 1-butyl-3-methylimidazolium chloride. Multiple stable conformers with the chloride anion positioned (in-plane) around the imidazolium ring or above the C2-H bond are determined. The relative energy ordering of the conformers is examined at the B3LYP, MP2, and CCSD(T) levels. Zero-point energies, BSSE, and basis set effects are examined. For accurate results, correlation (dispersion) effects must be included. The most stable conformers are essentially degenerate and have the chloride H-bonding to, or lying above, the C2-H bond. Other conformers are found to lie approximately 30 and approximately 60 kJ mol(-1) higher in energy. Results are compared with those from recent simulations and experimental studies. The effect of the chloride anion on rotation of the butyl chain is investigated and found to lower some rotational barriers while enhancing others. The origin of the rotational barriers is determined. The number and type of hydrogen bonds formed between the imidazolium cation and chloride anion is found to vary significantly among conformers. No evidence of a possible intra C(alkyl)-H...pi interaction is obtained; however, hints of a Cl...pi interaction are found. The vibrational spectrum of each conformer is examined, and the origin of multiple (H-bonding) features in the vibrational spectrum of the ionic liquid explained.  相似文献   

10.
Reho JH  Higgins JP  Lehmann KK 《Faraday discussions》2001,(118):33-42; discussion 43-62
Fluorescence following optical excitation of the 1 3 sigma u+ state of K2 prepared on helium nanodroplets to the predissociative 1 3 pi g state yields molecular emission from both the (B)1 1 pi u and (A)1 1 sigma u+ K2 states as well as atomic emission from the expected 4 2P3/2, 1/2-->4 2S1/2 dissociation channel. A approximately 12 cm-1 red shift is observed in the molecular emission excitation spectrum compared to the atomic emission excitation spectrum. Time-correlated photon counting measurements demonstrate the rise time for both atomic and molecular products to be < 80 ps, independent of vibrational level excited. This lifetime is interpreted as the total depopulation time for the optically excited 1 3 pi g state, which is dominated by intersystem crossing at low vibrational energy and by predissociation at the highest vibrational level. It is deduced that the timescale for intersystem crossing must be of the order of 10 ps. Symmetry restrictions for the isolated K2 imply that the intersystem crossing from the 1 3 pi g state to the (B)1 1 pi u and (A)1 1 sigma u+ states must be induced by interaction with the helium nanodroplet.  相似文献   

11.
In order to assess the accuracy of wave-function and density functional theory (DFT) based methods for excited states of the uranyl(VI) UO2(2+) molecule excitation energies and geometries of states originating from excitation from the sigma(u), sigma(g), pi(u), and pi(g) orbitals to the nonbonding 5f(delta) and 5f(phi) have been calculated with different methods. The investigation included linear-response CCSD (LR-CCSD), multiconfigurational perturbation theory (CASSCFCASPT2), size-extensivity corrected multireference configuration interaction (MRCI) and AQCC, and the DFT based methods time-dependent density functional theory (TD-DFT) with different functionals and the hybrid DFTMRCI method. Excellent agreement between all nonperturbative wave-function based methods was obtained. CASPT2 does not give energies in agreement with the nonperturbative wave-function based methods, and neither does TD-DFT, in particular, for the higher excitations. The CAM-B3LYP functional, which has a corrected asymptotic behavior, improves the accuracy especially in the higher region of the electronic spectrum. The hybrid DFTMRCI method performs better than TD-DFT, again compared to the nonperturbative wave-function based results. However, TD-DFT, with common functionals such as B3LYP, yields acceptable geometries and relaxation energies for all excited states compared to LR-CCSD. The structure of excited states corresponding to excitation out of the highest occupied sigma(u) orbital are symmetric while that arising from excitations out of the pi(u) orbitals have asymmetric structures. The distant oxygen atom acquires a radical character and likely becomes a strong proton acceptor. These electronic states may play an important role in photoinduced proton exchange with a water molecule of the aqueous environment.  相似文献   

12.
We report studies of supersonically cooled m-aminobenzoic acid using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. Two conformers have been identified and characterized using the hole-burning method in the REMPI experiment. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state (S(1)) of the neutral species and those of the ground state cation (D(0)) have been assigned, and the adiabatic ionization potentials have been determined for both conformers. The REMPI spectra are dominated by in-plane motions of the substituents and ring deformation modes. A propensity of Deltav=0, where Deltav is the change in vibrational quantum number from the S(1) to the D(0) state, is observed in the ZEKE spectra. The origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. Comparisons of these results with those of p-aminobenzoic acid will be analyzed.  相似文献   

13.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

14.
Excited state potential energy hypersurfaces of 7H-furo[3,2-g][1]benzopyran-7-one (psoralen) have been explored employing (time-dependent) Kohn-Sham density functional theory. At selected points, we have determined electronic excitation energies and electric dipole (transition) moments utilizing a combined density functional/multireference configuration interaction method. Spin-orbit coupling has been taken into account employing an efficient, non-empirical spin-orbit mean-field Hamiltonian. Franck-Condon factors have been computed for vibrational modes with large displacements in the respective Dushinsky transformations. The simulated band spectra closely resemble experimental band shapes and thus validate the theoretically determined nuclear structures at the S(0), S(1), and T(1) minima. In the S(1) (pi(HOMO)-->pi*(LUMO)) state, the lactone bond of the pyrone ring is significantly elongated. From excited vibrational levels of the S(1) state a conical intersection between a (pi-->sigma*) excited state and the electronic ground state may be energetically accessible. Fast non-radiative decay via this relaxation pathway could explain the low fluorescence quantum yield of psoralen. The T(1) (pi(HOMO-1)-->pi*(LUMO)) exhibits a diradicaloid electronic structure with a broken C(5)-C(6) double bond in the pyrone ring. A variational multireference spin-orbit configuration interaction procedure yields a phosphorescence lifetime of 3 s, in excellent agreement with experimental estimates.  相似文献   

15.
Multidimensional Franck-Condon simulations of the resonance enhanced multiphoton ionization (REMPI) and mass-analyzed threshold ionization (MATI) spectra of phenol-nitrogen are obtained from CASSCF, MRCI, and SACCI optimized geometries. In the REMPI simulations, the results are unsatisfactory, as the transitions associated with intermolecular modes are widely underestimated and much less intense than those associated with intramolecular modes. Conversely, the simulations of the MATI spectra show a good similarity to experiment. The best simulations are obtained in both instances from the SACCI optimized geometries. Furthermore, the simulations suggest that the two most prominent Franck-Condon envelopes present in the MATI spectra are due to the sigma and sigma + ngamma' combination bands in accord with the assignments of the MATI spectra of the analogous phenol-carbon monoxide cluster.  相似文献   

16.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states.  相似文献   

17.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

18.
The structure and dynamics of the van der Waals (vdW) complex of aniline (An) with argon (Ar) are studied using ab initio methods. The inversion potential of the aniline-argon (AnAr) complex perturbed by the weak vdW interaction is calculated taking into account subtle corrections from the zero-point energy of the vdW modes and from the frequency shifts of the An normal modes modified by the complexation. The intermolecular potential energy surface (PES) of the AnAr complex is determined by performing a large-scale computation of the interaction energy and the fitting of the analytical many-body expansion to the set of single-point interaction energies. The PES determined shows two deep local minima corresponding to the anti and syn AnAr conformers. The difference in the energies of these two minima is only 15 cm-1, but it is sufficient to localize the inversion wave functions and to form the two conformers. In the conformer anti (syn) of lower (higher) energy, Ar is bound to the An ring opposite (adjacent) the amino-hydrogens. In the additional local minima higher in energy, Ar approaches the aniline ring between the C-H bonds near its plane. An additional local minimum is located opposite of nitrogen between the two N-H bonds. The high-energy minima are, however, too flat to form stable conformers. The perturbation of the interaction of Ar with the phenyl ring by the NH2 group is described by the vdW hole, which is responsible for unusually strong intermode mixing in the excited intermolecular vibrational states. The analysis of these states calculated for the ground (S0) as well as the first excited electronic state (S1) resolves difficulties faced earlier with the assignment of the observed vibronic bands of AnAr.  相似文献   

19.
The VUV absorption spectrum of fenchone is re-examined using synchrotron radiation Fourier transform spectrometry, revealing new vibrational structure. Picosecond laser (2+1) resonance enhanced multiphoton ionization (REMPI) spectroscopy complements this, providing an alternative view of the 3spd Rydberg excitation region. These spectra display broadly similar appearance, with minor differences that are largely explained by referring to calculated one- and two-photon electronic excitation cross-sections. Both show good agreement with Franck-Condon simulations of the relevant vibrational structures. Parent ion REMPI ionization yields with both femtosecond and picosecond excitation laser pulses are studied as a function of laser polarization and intensity, the latter providing insight into the relative two-photon excitation and one-photon ionization rates. The experimental circular-linear dichroism observed in the parent ion yields varies strongly between the 3s and 3p Rydberg states, in good overall agreement with the calculated two-photon excitation circular-linear dichroism, while corroborating other evidence that the 3pz sub-state plays no more than a very minor role in the (2+1) REMPI spectrum. Vibrationally resolved photoelectron spectra are recorded with picosecond pulse duration (2+1) REMPI at selected intermediate vibrational excitations. The 3s intermediate state displays a very strong Δv=0 propensity on ionization, but the 3p intermediate evidences more complex vibronic dynamics, and we infer some 3p→3s internal conversion prior to ionization.  相似文献   

20.
The "hot bands" of the Huggins band of ozone are assigned, in both the 218 K and the 295 K spectrum. The assignment is based on intensities calculated with three-dimensional vibrational wave functions for the electronic ground state (X) and the excited state (B). The hot-band structures in the 218 K spectrum all can be assigned to transitions starting from vibrational states with one quantum of stretching excitation in the ground electronic state. The 295 K spectrum shows new structures, which are due to transitions originating from vibrational states in the X state with two quanta of excitation of the stretching modes--despite very small Boltzmann factors. All structures in the low-energy range of the 295 K spectrum, even the very weak ones, thus can be uniquely interpreted. The significance of hot bands results from the strong increase of Franck-Condon factors with excitation of the stretching modes in both the lower and/or the upper electronic states, whose equilibrium bond lengths differ significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号