首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A microbore high-performance liquid chromatographic method with column-switching was developed for the analysis of myristicin from rat serum without prepurification. Deproteinization, fractionation, concentration and separation of analyte were carried out by appropriate switching of columns and using solvent mixtures. The method showed excellent precision, accuracy and speed with a detection limit of 10 ng mL−1 from 25 μL of serum. The total analysis time per sample was 25 min and the coefficients of variation for intra- and inter-assay were less than 1.8%.  相似文献   

2.
Summary The relationship between column length and efficiency is theoretically derived. Based on experimental data, the validity of the relationships between peak width and retention time, and between plate height, column length and the capacity ratio is shown.  相似文献   

3.
The reduced heights equivalent to a theoretical plate (HETP) of naphtho[2,3-a]pyrene were measured at room temperature on two sets of new prototype columns designed to be used in very high pressure liquid chromatography (VHPLC). The mobile phase used was pure acetonitrile. The columns are 50, 100, and 150 mm long. Those of the first set are 2.1 mm I.D., those of the second set, 3.0 mm I.D. The performance of these new columns were compared to those of the first generation of VHPLC columns, commercially available in 2.1 mm I.D. The prototype and commercial columns behave similarly at low reduced linear velocities (ν<5ν<5), when the heat effects are negligible. At high flow rates, the shorter prototype columns have a twice better efficiency and less steep C-branches than the commercial columns. In contrast, the C-branch of the 150 mm long prototype columns are slightly steeper than those of the commercial columns. The important contribution to the reduced HETP that is due to the heat effects at high flow rates can in part be accounted for by a band broadening model governed by a flow mechanism with the shortest prototype columns. The sole heat effects cannot, however, explain the mediocre reduced HETPs of the 2.1 and 3.0 I.D. 150 mm long prototype columns. It seems that radial heterogeneity of the flow rate of the long prototype columns is significantly larger than that of the short columns. The contribution of the packing heterogeneity adds up to that of the heat effects to yield a poor column efficiency when sub-2μmsub-2μm are packed into thin, long column tubes.  相似文献   

4.
Byproducts of arachidonic (AA) and docosahexaenoic acid (DHA) oxidation are highly relevant for the study of free radical associated conditions in the perinatal period. Plasma metabolites can provide the clinician with a snapshot of the oxidant status of patients before and after specific clinical interventions (e.g.: supplementation with oxygen). We describe a new andreliable ultra-performance liquid mass spectrometry method to determine F2-isoprostanes and other byproducts (isoprostanes, isofurans, neuroprostanes, neurofurans) in newborn serum samples. Cord blood samples were obtained from severely depressed newborn infants (Apgar score 1 min < 3; arterial cord pH < 7.00), and aliquoted for serum determination and stored at −80 °C. A UHPLC-MS/MS method was employed. It has a series of technical advantages: simple sample treatment; reduced sample volume (100 μL) which is essential for preterm neonates with low circulating blood volume, high throughput of sample analysis (96 samples in less than 24 h) and high selectivity for different isoprostanes isomers. Excellent sensitivity was achieved within limits of detection between 0.06 and 4.2 nmol L−1, which renders this method suitable to monitoranalyte concentration in newborn samples. The method's precision was satisfactory; with coefficients of variation around 5–12% (intra-day) and 7–17% (inter-day). The reliability of the described method was assessed by analysis of spiked serum samples obtaining recoveries between 70% and 120%. The proposed method has rendered suitable for serum determination for newborn babies at risk of oxygen free radical associated conditions.  相似文献   

5.
Currently, chromatographic analyses are carried out by operating columns packed with sub-2 μm particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath.  相似文献   

6.
Anthocyanins are water‐soluble pigments that are liable for colors ranging from red to blue of most fruits, vegetables, and flowers. A novel and fast method was developed for the determination of five anthocyanins and free pelargonidin by high‐performance liquid chromatography coupled to photodiode array detection. A 10% formic acid and acetonitrile mixture was employed as mobile phase in the gradient elution mode. Mobile phase composition, column temperature, flow rate, injection volume, and column conditioning time were optimized by employing a stepwise strategy. Using a C18 core–shell column (100 × 4.6 mm, 2.7 μm), the separation of six analytes was accomplished in less than 9.5 min with a run‐to‐run analysis time of 19 min. The developed method was validated with respect to linearity (r > 0.9999), limit of detection, limit of quantification, intra‐/interday precision (<2%), accuracy (98.6–104.4%), and specificity. Afterwards, the method was applied to the determination of anthocyanins present in 15 different samples including fruits, fruit juices, and fruit wines.  相似文献   

7.
Dichlorodiphenyltrichloroethane (DDT) and its main metabolites are important environmental pollutants and have been in the focusing center. It is of great value to develop simple, rapid, sensitive and easy to operate method for monitoring them. Present work established a novel temperature controlled ionic liquid dispersive liquid phase microextraction method in combination with high performance liquid chromatography for the enrichment and determination of DDT and its metabolites. Proposed method used only ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) for the enrichment and overcame the demerits of conventional single drop liquid phase microextraction and dispersive liquid-liquid microextraction. Temperature has two functions here, one is to promote the dispersing of ionic liquid into the solution and forming infinitesimal micro-drop and increasing the chance of the analytes extracted into ionic liquid phase, and the other one is to perform phase-separation. A series of factors that would affect the extraction performance was systematically investigated and optimized. The experimental results indicated that the detection limits obtained for p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE were 0.24, 0.24, 0.45, 0.24 ng mL−1, respectively. The linear ranges for them were from 1.0 to 100 ng mL−1, and the precisions were between 3.8% and 6.7% (n = 6). The proposed method was validated with four real-world samples and excellent results were achieved.  相似文献   

8.
In this work, a chromatography column comparison and rapid pretreatment development were carried out. A multi‐class method was built based on the quick, easy, cheap, effective, rugged, and safe pretreatment method with hydrophilic interaction ultra high performance liquid chromatography and tandem mass spectrometry for the high‐throughput analysis of five antivirals in chicken muscle. The HSS T3 column, BEH HILIC column and BEH Amide column were studied, and their chemical functionalities and chromatographic separation effectiveness were compared. The BEH Amide column was selected to perform the mass spectrometry analysis under the hydrophilic interaction chromatography mode. First, a different strategy without adding MgSO4 and NaCl into the muscle samples was considered. Then, different concentrations of formic acid, acetic acid, and ammonia in acetonitrile were compared for better extraction efficiency. Nine sorbents (C18, PSA, NH2, Florisil, Alumina‐B, Alumina‐N, PestiCarb, NANO, and NANO‐NH2) were studied. The optimized procedure consisted of the use of 10% acetic acid in acetonitrile for the extraction solvent and NANO‐NH2 for clean‐up. NANO‐NH2 had not been applied in other matrix and pollutants so far. The developed method provided favorable trueness, precision, and acceptable matrix effect. Meanwhile, the method was sensitive, the limits of detection of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine achieved were 0.56, 0.50, 0.30, 2.22, and 0.51 μg/kg, respectively, and were successfully applied for the routine detection of antivirals in the chicken samples.  相似文献   

9.
Magnetic nanoparticles incorporated into the layer of a (polymeric) sorbent, covering the inner surface of a fused silica capillary, can produce—upon applying an electric field across the capillary length—an electromagnetic field that would affect to some extent the separation of charged analytes. A first theoretical assessment of such phenomenon is given here with a view of developing a novel hybrid separation technique based on the principles of electrophoresis, chromatography, and magnetism. Specifically, the effect of built-in magnetic nanoparticles, varying in absolute number, on the strength of axial electric field in an open-tubular column for capillary electrochromatography (CEC) column for CEC—being expressed through the associated changes in near-wall dielectric constant—was analyzed using linearized Poisson–Boltzmann equation.  相似文献   

10.
Fast and sensitive monitoring of drug‐induced liver and kidney injury in early stage is beneficial. An ultrafast liquid chromatography with tandem mass spectrometry assay was developed and validated to simultaneously determine ten endogenous biomarkers in serum and urine, including hippuric acid, phenylacetylglycine, 5‐oxoproline, cholic acid, taurine, indoleacetic acid, 3‐indoxyl sulfate, guanidinosuccinic acid, guanidinoacetic acid and uric acid. A CAPCELL CORE PC column (2.1 × 150 mm, 2.7 μm) was adopted for analytes separation. Gradient elution was performed with acetonitrile and water containing 5 mM ammonium acetate. Simple protein precipitation was applied in sample preparation. Good linearities were achieved with all the regression coefficients above 0.9911. Accuracy was 2.9–14.2% in serum and 4.1–14.6% in urine. The mean recovery was above 70% with acceptable matrix effects. The method was applied to monitor injury induced by Euphorbiae pekinensis Radix with a subacute rats model. All the biomarkers showed obvious concentration changes during the injury period. Furthermore, several biomarkers showed significant changes in earlier stage when compared with the current clinical serum bio‐parameters. The method might be helpful for early diagnosis of drug induced liver and kidney injury in clinical after tested on more drugs.  相似文献   

11.
A cold column trapping-cloud point extraction (CCT-CPE) method coupled to high performance liquid chromatography (HPLC) was developed for preconcentration and determination of curcumin in human urine. A nonionic surfactant, Triton X-100, was used as the extraction medium. In the proposed method, a low surfactant concentration of 0.4% v/v and a short heating time of only 2 min at 70 °C were sufficient for quantitative extraction of the analyte. For the separation of the extraction phase, the resulted cloudy solution was passed through a packed trapping column that was cooled to 0 °C. The temperature of the CCT column was then increased to 25 °C and the surfactant rich phase was desorbed with 400 μL ethanol to be directly injected into HPLC for the analysis. The effects of different variables such as pH, surfactant concentration, cloud point temperature and time were investigated and optimum conditions were established by a central composite design (response surface) method. A limit of detection of 0.066 mg L−1 curcumin and a linear range of 0.22–100 mg L−1 with a determination coefficient of 0.9998 were obtained for the method. The average recovery and relative standard deviation for six replicated analysis were 101.0% and 2.77%, respectively. The CCT-CPE technique was faster than a conventional CPE method requiring a lower concentration of the surfactant and lower temperatures with no need for the centrifugation. The proposed method was successfully applied to the analysis of curcumin in human urine samples.  相似文献   

12.
The point of our published papers since 1957 is reviewed. The relations between the required value of peak resolution, K1 (or R), and peak separation, K3 (eqn 9); K1 and relative accuracy of a peak height quantitative method, Ph (eqn. 10); K1 and relative accuracy of a peak area method, Pa, (eqn. 12) at different concentration ratios, ?, are derived. The final result in Table 2 shows a large influence of ? on the required value of K1. The approximately linear relation between peak width and retention value (eqn. 18) exists not only in GC. but also in HPLC. Plate height values H1 and H for a solute with capacity ratio, k′, equal to unity or approaching infinity, respectively, are used to evaluate the column efficiency (eqn. 20). The measuring methods (eqn. 21,22,23) and parameters effecting on H1 and H are given for GC packed column (eqn. 24), GC open tubular column (eqn. 25) and HPLC (eqn. 26). In the light of this, columns of high efficiency were developed. Some typical chromatograms for high speed analysis and separation of complex mixtures are given.  相似文献   

13.
Summary A reversed-phase high-performance liquid chromatographic (HPLC) assay, based on the indirect approach to enantiomeric analysis, for the determination of ibuprofen in human serum and urine has been developed. Following the addition of (R,S)-flurbiprofen, as internal standard, the enantiomers of ibuprofen were isolated from plasma and urine samples by liquid-liquid extraction at acidic pH. The enantiomers of flurbiprofen and ibuprofen were derivatized with (R)-1-(naphthen-1-yl)ethylamine, using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxybenzotriazole as coupling reagents, to yield the corresponding diastereoisomeric amides. Chromatographic resolution of the derivatives was achieved using a C18 column (Waters Resolve C18; 5 μm, 150×3.9 mm) using a mobile phase of phosphate buffer (pH 3.5, 0.01 M): acetonitrile (50∶50 v/v) at a flow rate of 1.5 mL min−1 at ambient temperature. Quantification was carried out using a spectrofluorometer with excitation and emission wavelengths of 290 and 330 nm respectively. The use of a semimicrobore column (150×2.1 mm) containing the same stationary phase facilitated the analysis of the free drug enantiomer concentrations following equilibrium dialysis. The derivatization procedure was carried out as described above but with a reduction in the quantities of the reagents used in order to reduce the background noise in the chromatographic analysis. The HPLC methodology for the determination of free drug enantiomer concentrations was validated against a previously reported method employing the radiolabelled drug.  相似文献   

14.
Reversed-phase high performance liquid chromatography on microparticulate columns of octadecylsilane with elution by a gradient of acetonitrile in phosphate buffer, pH 7.5, separated porphyrin free acids directly in urine for the first time. Interfering fluorescence was removed with a precolumn of large particle size at acid pH. Peak area fluorescence by the method of standard addition was related linearly to amount of a porphyrin from 5 to 60 nanograms. The method was reproducible to ± 13%, able to detect 0.3 nanograms of a porphyrin in a 1 ml urine sample in 45 minutes, and capable of detecting the typical clinical patterns of normal and porphyrinuric urines. Modifications make the method applicable to measurements in other biological samples and to research separations. With the added rapidity of analysis, the method could expand porphyrin analysis in routine clinical medicine.  相似文献   

15.
The presence of antibiotics in the environment is of increased interest and, as modern mass spectrometers become more efficient, we are increasingly aware of traces of pharmaceuticals appearing in a wide range of environmental and biological matrices. The Q-Exactive mass spectrometer is part of these innovative hybrid high-resolution mass spectrometers (HRMS) which is often associated with peptide sequencing or metabolomics but with a limited number of studies focusing on its application to the quantification of small molecules in environmental and biological matrices. It combines the high resolving power (RP) performance of the Orbitrap with the high performance selectivity of the quadrupole. Tetracyclines (TCs) are a family comprising some of the most widely used antibiotics in veterinary medicine. This study presents the quantitative performances of the Q-Exactive by illustrating a new approach to quantify TCs using liquid chromatography coupled to a HRMS in a complex matrix, i.e., swine manure. The Q-Exactive was used at high-resolution in both full scan (FS) and targeted ion fragmentation (tMS2) modes. These two modes were optimized and compared to determine the most reliable and efficient approach to quantify TCs with good accuracy. The proposed method was optimized to obtain the best selectivity and sensitivity, thus eliminating false positive and allowing the detection of trace levels of analyte. The TCs were extracted from the matrix by sonication using McIlvaine buffer followed by an off-line solid phase extraction method to concentrate and clean the extracts. Both FS and tMS2 modes presented good linearity (R2 > 0.991) and repeatability (RSD < 15%). Mass accuracy was acceptable with values below 2 ppm. The method detection limits (MLD) calculated from the calibration curves ranged from 2.0 to 12 ng g−1 for FS mode and from 1.5 to 3.6 ng g−1 for tMS2 mode. Accuracy and interday/intraday relative standard deviations were below 21% for both modes studied. TCs were quantified in real samples of swine manure with concentrations ranging from 29 to 75 ng g−1. This study showed the possibility of using hybrid HRMS for trace detection and quantification of TCs in a complex matrix, thus avoiding false positive while achieving good selectivity and sensitivity.  相似文献   

16.
An online SPE‐LC method that can determine both anthracyclines and taxanes simultaneously in human serum samples is reported. The entire method of extraction, separation and UV detection was achieved online by column switching between an SPE column (Biotrap 500 (20×4 mm)) and an analytical column (Zorbax XDB C18, 150×4.6 mm, 5 μm) with a 23 min total cycle time. The method is linear (r2>0.998) over the range of 0.5–25 μg/mL. The analytes of interest are retained on the SPE column with good recovery (84–117%), while proteins and other serum components elute to waste. This online clean‐up is much faster (150 s) and less manual than traditional off‐line extraction methods. Using 0.1 mL spiked serum samples, the LOQ was 0.5 μg/mL. Intra‐ and inter‐day precision were acceptable (≤15% RSD) at and above the LOQ. The method was applied to the analysis of serum samples from patients undergoing chemotherapy with these agents.  相似文献   

17.
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data.

In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.  相似文献   


18.
A BODIPY-based fluorescent derivatization reagent with a hydrazine moiety, 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide), has been designed for aldehyde labeling. An increased fluorescence quantum yield was observed from 0.38 to 0.94 in acetonitrile when it reacted with aldehydes. Twelve aliphatic aldehydes from formaldehyde to lauraldehyde were used to evaluate the analytical potential of this reagent by high performance liquid chromatography (HPLC) on C18 column with fluorescence detection. The derivatization reaction of BODIPY-aminozide with aldehydes proceeded at 60 °C for 30 min to form stable corresponding BODIPY hydrazone derivatives in the presence of phosphoric acid as a catalyst. The maximum excitation (495 nm) and emission (505 nm) wavelengths were almost the same for all the aldehyde derivatives. A baseline separation of all the 12 aliphatic aldehydes (except formaldehyde and acetaldehyde) is achieved in 20 min with acetonitrile–tetrahydrofuran (THF)–water as mobile phase. The detection limits were obtained in the range from 0.43 to 0.69 nM (signal-to-noise = 3), which are better than or comparable with those obtained by the existing methods based on aldehyde labeling. This reagent has been applied to the precolumn derivatization followed with HPLC determination of trace aliphatic aldehydes in human serum samples without complex pretreatment or enrichment method.  相似文献   

19.
Micellar liquid chromatography makes use of aqueous solutions or aqueous‐organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl‐bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.  相似文献   

20.
A highly selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for on-line solid-phase extraction-HPLC determination of trace pentachlorophenol (PCP) in water samples. The PCP-imprinted amino-functionalized silica sorbent was characterized by FT-IR, SEM, nitrogen adsorption and the static adsorption experiments. The imprinted functionalized silica gel sorbent exhibited high selectivity and offered a fast kinetics for the adsorption and desorption of PCP. The prepared sorbent was shown to be promising for on-line solid-phase extraction for HPLC determination of trace levels of PCP in environmental samples. With a sample loading flow rate of 5 ml min(-1) for 2 min, an enhancement factor of 670 and a detection limit (S/N = 3) of 6 ng l(-1) were achieved at a sample throughput of five samples h(-1). The precision (RSD) for nine replicate on-line sorbent extractions of 10 microgl(-1) PCP was 3.8%. The sorbent also offered good linearity (r = 0.9997) for on-line solid-phase extraction of trace levels of PCP. The method was applied to the determination of PCP in local lake water, river water and wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号