首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
谢征微  李伯臧 《物理学报》2002,51(2):399-405
在Slonczewski自由电子模型的基础上,提出了一个可用于处理具有任意形状势垒的磁性隧道结中磁电子输运的简单方法,并以三种常见构形的势垒,即梯形势垒,计入了镜像势的梯形势垒和抛物线势垒为例,讨论了势垒形状对隧穿磁电阻及其随偏压变化的影响. 关键词: 磁性隧道结 隧穿磁电阻 任意形状势垒 非零偏压  相似文献   

2.
利用金属掩模法和Ir22Mn78合金反铁磁钉扎层,制备了四种钉扎型的Py/Al2O3/Py,Py/Al2O3/Co,Co/Al2O3/Py和Co/Al2O3/Co磁性隧道结,坡莫合金的成分为Py=Ni79Fe21.例如:利用狭缝宽度为100?μm的金属掩模,直接制备出室温隧穿磁电阻比值为17.2%的磁性隧道结Co/Al2O3/Co,其结电阻为76Ω,结电阻和结面积的积矢为76×104Ωμm2,自由层的偏转场为1114?A/m,并且在外加磁场0.1114A·m-1之间时室温磁电阻比值 关键词: 磁性隧道结 隧穿磁电阻 磁随机存储器 金属掩模  相似文献   

3.
冯玉清  赵昆  朱涛  詹文山 《物理学报》2005,54(11):5372-5376
通过XPS等微观分析手段证实了磁性隧道结在高温退火后,反铁磁层中的Mn元素扩散到被钉 扎铁磁层及势垒层中,破坏了势垒层/铁磁层界面,从而导致了磁性隧道结高温退火后TMR的 下降.然而在反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层后,Mn的扩散得到了抑制, 使磁性隧道结的热稳定性得以提高. 关键词: 磁性隧道结 纳米氧化层 x射线光电子能谱  相似文献   

4.
利用金属掩模法优化了制备磁性隧道结的实验和工艺条件,金属掩模的狭缝宽度为100 μm. 采用4 nm厚的Co75Fe25为铁磁电极和10或08 nm厚的铝氧化物 为势垒膜, 直接制备出了室温隧穿磁电阻(TMR)为30%—48%的磁性隧道结,其结构为Ta(5 nm)/Cu(25 nm)/Ni79Fe21(5 nm)/Ir22Mn78(10 nm)/ Co75Fe25 (4 nm)/Al(08 nm)-O/Co75Fe25(4 nm)/Ni79Fe 21(20 nm)/Ta(5 nm).同时,利用刻槽打孔法和去胶掀离法两种光刻技术并结合Ar离子束刻蚀及化学反应刻 蚀,制备出面积在4 μm×8 μm—20 μm×40 μm、具有室温高TMR和低电阻的高质量磁性 隧道结.300 ℃ 退火前后其室温TMR可分别达到22% 和50%.研究结果表明,采用光刻中的刻 槽打孔或去胶掀离工艺方法制备的小尺寸磁性隧道结,可用于研制磁动态随机存储器和磁读 出头及其他传感器件的磁敏单元. 关键词: 磁性隧道结 隧穿磁电阻 金属掩模法 光刻法  相似文献   

5.
利用磁控溅射方法沉积双势垒磁性隧道结多层膜, 其中Al-O势垒层由等离子体氧化1 nm厚的 金属铝膜方式制备,然后采用深紫外光曝光和Ar离子刻蚀技术、微加工制备出长短轴分别为 6和3 μm大小的椭圆形双势垒磁性隧道结(DBMTJ),并在室温和低温下对其自旋电子输运 特性进行了研究. DBMTJ的隧穿磁电阻(TMR)比值在室温和42 K分别达到27%和423%, 结电阻分别为136 kΩ·μm2和175 kΩ·μm2,并在实验中观 察到平行状 态下存在低电阻态及共振隧穿效应,反平行态下呈现高电阻态以及TMR随外加偏压或直流电 流的增加而发生振荡现象. 由此,设计了一种基于这种双势垒磁性隧道结隧穿特性的自旋晶 体管. 关键词: 双势垒磁性隧道结 隧穿磁电阻 共振隧穿效应 自旋晶体管  相似文献   

6.
4英寸热氧化硅衬底上磁性隧道结的微制备   总被引:1,自引:0,他引:1       下载免费PDF全文
就如何在4英寸热氧化硅衬底上沉积高质量的磁性隧道结纳米多层薄膜材料和如何利用光刻方法微加工制备均匀性较好的磁性隧道结方面做了初步研究,并对磁性隧 道结的磁电性质及其工作特性进行了初步测量和讨论.利用现有的光刻设备和工艺条 件在4英寸热氧化硅衬底上直接制备出的磁性隧道结,其结电阻与面积的积 矢的绝对误差在10% 以内,隧穿磁电阻的绝对误差在7% 以内,样品的磁性隧道结性质具有较好的均匀性和一致性,可以满足研制磁随机存储器存储单元演示器件的基本要求. 关键词: 磁性隧道结 隧穿磁电阻 磁随机存储器 4英寸热氧化硅衬底  相似文献   

7.
磁性隧道结Ni80Fe20/Al2O3/Co的制备和物性   总被引:1,自引:0,他引:1  
陈璟  杜军  吴小山  潘明虎  龙建国  张维  鹿牧  翟宏如  胡安 《物理》2000,29(1):5-6,18
用等离子体氧化形成绝缘层的方法,重复性地制备出了Ni80Fe20/Al2O3/Co磁性隧道结。样品的隧道磁电阻(TMR)比值在室温下最高可达6.0%,翻转场(switch field)可低于800A/m,平台宽度约2400A/m。结电阻的变化范围从几百欧姆到几百千欧。  相似文献   

8.
在Slonczewsik自由电子理论模型下,研究了两铁磁性金属电极被一平面磁性势垒隔开的磁性隧道结零偏压下的隧穿电导、自旋极化率和隧穿磁阻比率,研究表明隧道结的磁结构对隧穿电导和隧穿磁阻的值有很大的影响,当两磁性电极分子场方向相同,且都与势垒层分子场反平行时,隧穿电导数值达到最大,两者平行时,其数值最小,同时还分析了分子场的相对取向等对磁性隧道结自旋极化电子输运性质的影响.研究结果对自旋电子器件的设计具有一定的指导意义.  相似文献   

9.
在Slonczewsik自由电子理论模型下,研究了两铁磁性金属电极被一平面磁性势垒隔开的磁性隧道结零偏压下的隧穿电导、自旋极化率和隧穿磁阻比率,研究表明隧道结的磁结构对隧穿电导和隧穿磁阻的值有很大的影响,当两磁性电极分子场方向相同,且都与势垒层分子场反平行时,隧穿电导数值达到最大,两者平行时,其数值最小,同时还分析了分子场的相对取向等对磁性隧道结自旋极化电子输运性质的影响。研究结果对自旋电子器件的设计具有一定的指导意义。  相似文献   

10.
磁性隧道结自旋极化电子的隧穿特性   总被引:1,自引:0,他引:1  
铁磁金属间通过中间层的自旋极化电子隧穿产生的磁性耦合,在自旋电子器件中有许多潜在的应用.考虑由一平面磁性势垒层隔开的两铁磁性金属电极构成的磁性隧道结,针对中间层形成的矩形势垒,在近自由电子模型的基础上,计算零偏压下的隧穿电导、自旋极化率和隧穿磁阻比率,分析势垒层特性、分子场强弱、分子场相对取向等对隧道结自旋极化电子隧穿特性的影响.计算结果对自旋电子器件的设计具有一定的指导意义.  相似文献   

11.
A tunnel magnetic junction is considered with magnetic hard and magnetic soft layers of cubic symmetry. The magnetic switching of the layers is analyzed for a magnetic field perpendicular to the initial magnetizations. In such a situation, an additional peak in the tunnel magnetoresistance ratio appears at the magnetic field value that is substantially lower than the anisotropy field of the soft layer.  相似文献   

12.
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier.  相似文献   

13.
We measured inelastic electron tunneling (IET) spectra and conductance for MgO tunneling magnetoresistance (TMR) films to obtain information on the ferromagnetic/barrier layer interface. The IET spectra showed the difference between amorphous and crystalline structures in the barrier. In the magnetic tunnel junction (MTJ) with a crystalline barrier the IET spectra indicated an Mg-O phonon peak at a low bias voltage by measurement with a parallel magnetization configuration. On the other hand, no peak was observed in the MTJ with an amorphous barrier.  相似文献   

14.
In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR–V curves, output voltages and IV characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR–V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series.  相似文献   

15.
Magnetic tunnel junctions with ferroelectric barriers, often referred to as multiferroic tunnel junctions, have been proposed recently to display new functionalities and new device concepts. One of the notable predictions is that the combination of two charge polarizing states and the parallel and antiparallel magnetic states could make it a four resistance state device. We have recently studied the ferroelectric tunneling using a scanning probe technique and multiferroic tunnel junctions using ferromagnetic La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 as the electrodes and ferroelectric (Ba, Sr)TiO3 as the barrier in trilayer planner junctions. We show that very thin (Ba, Sr)TiO3 films can sustain ferroelectricity up till room temperature. The multiferroic tunnel junctions show four resistance states as predicted and can operate at room temperatures.  相似文献   

16.
We have recently evidenced a junction magnetoresistance (JMR) signal of about 5% in magnetic tunnel junctions (MTJs) with ZnS as tunnel barrier layer. The MTJ were grown by magnetron sputtering on Si (1 1 1) substrate at room temperature and have the following structure: Fe6 nmCu30 nmCoFe1.8 nmRu0.8 nmCoFe3 nmZnS2 nmCoFe1 nmFe4 nmCu10 nmRu3 nm.

The hard magnetic bottom electrode consists of an artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through an Ru spacer layer. The magneto-transport for these MTJ has been studied at various temperatures to gain understanding of the transport mechanism in such junctions. A strong and linear increase of the JMR is observed as the temperature is decreased to reach 10% at a low temperature, while the conductance decreases with decreasing temperature. To understand the mechanism at the origin of these behaviors, the contribution of magnon is taken into account. It is concluded that the observed behaviors are not only related to the magnon contribution but that resonant low-level states inside the barrier can assist the tuneling transport.  相似文献   


17.
Current in heterogeneous tunnel junctions is studied in the framework of the parabolic conduction-band model. The developed model of the electron tunneling takes explicitly into account the difference of effective masses between ferromagnetic and insulating layers and between conduction subbands. Calculations for Fe/MgO/Fe-like structures have shown the essential impact of effective mass differences in regions (constituents) of the structure on the tunnel magnetoresistance of the junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号