首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用垂直沉积技术及相应的改进方法,使用化学合成的400 nm单分散二氧化硅微球自组装制备了胶体晶体薄膜。通过扫描电镜与分光光度计对样品的微观结构与透过光谱进行了表征,并对比研究了不同的垂直沉积方法对胶体晶体的影响。结果表明,通过温度与流量控制两种改进手段,均能制备具有六方密堆结构周期排列的胶体晶体薄膜。在垂直沉积过程中适当的升高温度有利于降低胶体粒子的用量,而通过流量控制的垂直沉积技术则可以有效缩短自组装时间。通过调节蠕动泵改变液面与基板的相对运动速度,或者调控温度改变胶体溶液的蒸发速率,可在材料表面形成单层或多层的胶体晶体薄膜。改进的垂直沉积技术将有望应用于快速沉积大面积、高质量的胶体晶体材料。  相似文献   

2.
《Solid State Sciences》2001,3(1-2):183-188
Lithium vanadate films have been prepared on vanadium metal substrates using lithium hydroxide aqueous solutions in the autoclave by the hydrothermal-electrochemical method. The X-ray diffraction pattern of the fabricated film showed a single phase of stoichiometric crystalline orthorhombic βII-Li3VO4 without any other impurity phases. As an application of this method, we have demonstrated the direct fabrication of europium doped YVO4 films on vanadium substrate for luminescent materials using hydrothermal-electrochemical method. Those films showed sufficient intensity of luminescent property at room temperature. Therefore, this processing route may serve as an inexpensive and environmentally friendly way of the direct fabrication of the vanadate films with controlled crystal morphology and size simply by changing synthesis parameters.  相似文献   

3.
肖卫涛  张治军 《化学进展》2009,21(6):1299-1303
聚合物孔材料的制备和应用研究已经成为聚合物科学和材料科学热点,制备聚合物孔材料的方法发展很快。本文综述了聚合物孔材料的制备方法,包括胶体晶模版法、水模版法、超临界二氧化碳发泡法、自组装法等。其中本课题组首次提出的无模版自组装法操作简单、无需模版、环境友好,具有广阔的发展前景。  相似文献   

4.
A convenient approach was developed to fabricate monodisperse nigrosine-doped poly(methyl methacrylate-co-divinylbenzene-co-methacrylic acid) nanoparticles with different cross-linkage by soap-free emulsion polymerization at boiling status and swelling process. The dye-doped nanoparticles were used for the fabrication of colloidal crystal films and beads. It was found that nigrosine dye in the nanoparticles can efficiently depress the light scattering inside the colloidal crystal films and eliminate the iridescent effect in the photonic beads. These results make the colloidal crystals useful in photonic paper, bioassay, and so on.  相似文献   

5.
Centimeter-scale poly(acrylic acid-co-DVB80) (PAA) 3D colloidal crystal belts were prepared via a novel robust vertical deposition technique based on negative pressure and curvature substrate of the glass vial. The formation of PAA colloidal crystal belts was investigated. The results indicated that curvature could control the dimension of PAA colloidal crystal belts. Well-controlled negative pressure resulted in rapid fabrication of well-defined PAA colloidal crystal belts. Curvature substrate of glass vial could distribute shrinking stress in the process of drying of colloidal films. Strong hydrogen bonding interactions among carboxyl groups on the surface of PAA colloidal particles was responsible for PAA colloidal crystal belts with closed-packing characteristics.  相似文献   

6.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

7.
In this work, an improved vertical deposition method, namely, a flow-controlled vertical deposition (FCVD) method, was used to grow colloidal crystals with large spherical colloids in water solvent and to infiltrate the colloidal crystals. Using the FCVD method, latex spheres as large as 2 microm can be fabricated into colloidal crystals in water. In addition, the method works very well for controlling surface morphologies of silica-infiltrated opals. Furthermore, fabrication of colloidal crystal heterostructures was demonstrated.  相似文献   

8.
We report the fabrication of connected open structures from close-packed colloidal crystals by hyperthermal neutral beam etching. Colloidal crystal films of polystyrene microspheres were prepared by a vertical deposition method. Exposure of the colloidal crystal films to hyperthermal neutral beam made isolated microspheres in the face-centered cubic lattice, each of which was connected with its twelve nearest neighbors through very thin cylinders. Due to the charge neutrality of impinging gas molecules of the hyperthermal neutral beam, the spherical shape of polymer microspheres was almost maintained during the etching process. The Bragg reflection peaks were modulated by the etched volume of colloidal crystals. Finally, the inverse structures of such open structures were replicated by a simple room-temperature chemical vapor deposition and subsequently burning out polymer template spheres.  相似文献   

9.
While the stability of liquid films on substrates is a classical topic of colloidal science, the availability of nanostructured materials, such as nanotubes, nanofibres and nanochannels, has raised the question of how the stability of liquid films and their wetting behaviour is affected by nanoscale confinement. This paper will present the conditions for the stability of liquid films on and inside cylindrical solid substrates with nanometre scale characteristic dimensions. It is shown that the stability is determined by an effective disjoining/conjoining pressure isotherm which differs from the corresponding disjoining/conjoining pressure isotherm of flat liquid films on flat solid substrates. From the former, the equilibrium contact angles of drops on an outer or inner surface of a cylindrical capillary have been calculated as a function of surface curvature, showing that the expressions for equilibrium contact angles vary for different geometries, in view of the difference in thickness of the film of uniform thickness with which the bulk liquid (drops or menisci) is at equilibrium. These calculations have been extended to the case of glass nanocapillaries and carbon nanotubes, finding good agreement with experimental results in the literature.  相似文献   

10.
Focused ion beam milling is used to fabricate micron and submicron scale patterns in sintered silica colloidal crystal films. Rectangular cavities with both solid and porous boundaries, fluidic channels, and isolation of a small number of packed spheres are patterned. The ion beam can pattern sintered films of individual submicron size spheres and create patterns that cover up to 40 mum in less than 15 min. The experiments in this work indicate that the amount of redeposited material on the surface of a milled cavity determines whether the surface will be porous or solid. FIB direct patterning has applications in colloidal crystal based lithography, integrated photonic devices, optofluidic devices, and micrototal-analytical systems.  相似文献   

11.
This report describes the assembly of laterally diffusive lipid layers within the pores of colloidal crystals for potential application in membrane-based sensing. The amount of lipid encapsulated within colloidal crystals depends upon the method used to introduce the lipid to the crystalline substrate. Relative to a planar supported lipid bilayer, lipid loading in a 6.6 microm thick crystal was 15-73 times greater, as observed by fluorescence microscopy. Protein adsorption studies indicate that the crystal pores are open and that the silica surface of the crystal is passivated with respect to adsorption of a model protein when coated with POPC. Furthermore, the mesoporous environment of the colloidal crystal is found to protect lipid films from drying and rehydration processes that destroy planar supported lipid bilayers. The potential of colloidal crystal encapsulated lipid films for chemical sensing is demonstrated by a model protein binding assay.  相似文献   

12.
The fabrication of nanocrystals (NCs) composed of the cationic Au(I) complex was demonstrated by the reprecipitation method in which the colloidal solution of the NCs showed brilliant green phosphorescence with a quantum yield of 83% in n-hexane. Characterization of the prepared NCs was performed by transmission electron microscopy observation and elemental analysis with energy-dispersive X-ray spectroscopy. The obtained Au(I) NCs were particles of random shapes with a diameter of 200-400 nm. The selected-area electron diffraction and X-ray diffraction measurements showed the characteristic diffraction patterns attributable to the crystal structure of the bulk crystal of the Au(I) complex. A similar method was performed with a different counteranion, leading to a colloidal solution of the microcrystals (MCs) with brilliant yellow phosphorescence and a quantum yield of 26% in n-hexane. Luminescence patterning of the NCs and MCs was also achieved successfully by electrophoretic deposition onto an indium tin oxide (ITO)-coated glass substrate, resulting in characteristic luminescence patterns on the ITO substrates with relatively high photoluminescence quantum yields.  相似文献   

13.
The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).  相似文献   

14.
Films of opal, a colloidal crystalline lattice with closely packed structure, are anticipated to become a fundamental material in photonic crystal engineering. One of the technological issues is forming the opal film with a flat and uniform surface over a large area. This article describes a new and simple method for forming an opal film without special equipment. The opal film is formed by drying a colloidal suspension covered on a hydrophilic solid substrate. In the conventional method, a ring-shaped opal usually forms at the edge (contact line) of the suspension on the substrate. The new method improved the process of drying the colloidal suspension free from the ring formation. The driving force of this ring formation is based on capillary flow in the suspension from inside to outside because of the high evaporation rate at the contact line. To prevent capillary flow, the contact line of the suspension was covered with hydrophobic silicone liquid. As a result, ring formation was depressed and flat opal films with uniform structure were formed. The structure comprised cubic closely packed (111) planes, and the opal films were grown to grain sizes larger than 200 microm. In addition, the coating area of the opal film was greater than 75 cm2 using a 4-in. silicone wafer. This new method should be useful for coating high-quality opal film over large areas on solid substrates.  相似文献   

15.
Y Liu  D Cheng  IH Lin  NL Abbott  H Jiang 《Lab on a chip》2012,12(19):3746-3753
Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A(2) (PLA(2)).  相似文献   

16.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

17.
Cathodic electrophoretic deposition (EPD) has been utilized for the fabrication of composite films for the surface modification of NiTi shape memory alloys (Nitinol). In the proposed method, chitosan (CH) was used as a matrix for the incorporation of other functional materials, such as heparin, hydroxyapatite and bioglass. Chitosan-heparin films were deposited from solutions of non-stoichiometric chitosan-heparin complexes. It was found that the addition of anionic heparin to the solutions of cationic chitosan resulted in a significant increase in the cathodic deposition rate. The thickness of the films prepared by this method varied in the range of 0.1-3 microm. The ability of the chitosan-heparin films to bind antithrombin, as measured by binding of (125)I-radiolabeled antithrombin, was much greater than that of pure chitosan films. Composite chitosan-hydroxyapatite films, with thickness of 1-30 microm, were obtained as monolayers or laminates, containing chitosan-hydroxyapatite layers, separated by layers of pure chitosan. The hydroxyapatite nanoparticles showed preferred orientation in the chitosan matrix with the c-axis parallel to the substrate surface. The films showed corrosion protection of the Nitinol substrates in Ringer's physiological solutions. The feasibility of the fabrication of composite films containing hydroxyapatite and bioglass in the chitosan matrix has been demonstrated. The method offers the advantages of room temperature processing. The deposition mechanisms and possible applications of the films are discussed.  相似文献   

18.
We report here a novel colloidal lithographic approach to the fabrication of nonspherical colloidal particle arrays with a long-range order by selective reactive ion etching (RIE) of multilayered spherical colloidal particles. First, layered colloidal crystals with different crystal structures (or orientations) were self-organized onto substrates. Then, during the RIE, the upper layer in the colloidal multilayer acted as a mask for the lower layer and the resulting anisotropic etching created nonspherical particle arrays and new patterns. The new patterns have shapes that are different from the original as a result of the relative shadowing of the RIE process by the top layer and the lower layers. The shape and size of the particles and patterns were dependent on the crystal orientation relative to the etchant flow, the number of colloidal layers, and the RIE conditions. The various colloidal patterns can be used as masks for two-dimensional (2-D) nanopatterns. In addition, the resulting nonspherical particles can be used as novel building blocks for colloidal photonic crystals.  相似文献   

19.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.  相似文献   

20.
In this paper, we describe a rapid, accurate, and convenient method for postsynthetically tuning the optical properties of colloidal photonic crystals. High quality photonic crystal films are first synthesized and then coated iteratively with layers of water-soluble polyelectrolytes. The coating process results in nanometer-scale shifts in the photonic stop band, a process which has been monitored by theoretical modeling. The results suggest a fundamentally different, reproducible layering mechanism inside the confined spaces of the colloidal crystal where polyelectrolyte multilayers are less densely packed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号