首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This article discusses self-similar statements of the problem of the motion of a completely radiating and absorbing gas. The field of radiation is assumed to be quasi-steady-state, and the contribution of the radiation to the internal energy, as well as the pressure and the viscosity of the medium, are not taken into account. The presence of local thermodynamic equilibrium is assumed. The absorption coefficient is approximated by a power function of the pressure and the density. Scattering of the radiation is not taken into account. Under these assumptions, there exist self-similar statements of the problem for one-dimensional unsteady-state flows (a strong detonation, the problem of plug-flow, motion under the effect of a radiation source, and others) and two-dimensional steady-state flows (flow in a diffuser, supersonic flow around a wedge or a cone). It is shown that there exists a non steady-state spherically symmetrical flow depending on four parameters; this flow is adiabatic in spite of the presence of radiation. This article is made up of seven sections. It is shown in the first section that the presence of radiation leads to the appearance of new dimensional constants, entering into the equations of the problem. The second section is devoted to self-similar nonsteady-state one-dimensional flows. The third section contains a detailed study of one class of such flows. In a partial case, adiabatic flows of a radiating gas are obtained. In the fourth and fifth sections, a detailed analysis is made of the initial and boundary conditions from the point of view of dimensionality. The sixth section describes self-similar two-dimensional steady-state flows of a radiating-absorbing gas. The seventh section consists of remarks with respect to approximations of the transfer equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 8–22, July–August, 1970.  相似文献   

2.
This paper presents a simple finite element method for Stokes flows with surface tension. The method uses an unfitted mesh that is independent of the interface. Due to the surface force, the pressure has a jump across the interface. Based on the properties of the level set function that implicitly represents the interface, the jump of the pressure is removed, and a new problem without discontinuities is formulated. Then, classical stable finite element methods are applied to solve the new problem. Some techniques are used to show that the method is equivalent to an easy‐to‐implement method that can be regarded as a traditional method with a modified pressure space. However, the matrix of the resulting linear system of equations is the same as that of the traditional method. Optimal error estimates are derived for the proposed method. Finally, some numerical tests are presented to confirm the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Finite element modeling (FEM) of nonisothermal sheet tensile tests has been performed. The effect of deformation-induced heating was incorporated into an isothermal FEM program in two ways: (1) an experimentally measured temperature distribution was used to modify the plastic response of each element and (2) adiabatic heating was enforced by setting net heat production in each element equal to the work of deformation. For a specimen with a 1% taper, these models predict up to a 7% reduction in ultimate elongation for adiabatic tests relative to isothermal ones. These heat transfer conditions were approached at strain rates greater than 10−2/s and less than 10−4/s respectively. Comparison of these models with experiment suggests that the two extreme approximations can be used, except for a relatively narrow range of rates, to provide good first-order estimates of the heating effect on ductility without the need for cumbersome self-consistent heat transfer calculations. For mild steel sheet specimens tested in still air, the critical strain rate range is near the typical testing rate, making interpretation of standard tests difficult.  相似文献   

5.
In this paper we revisit the problem of implementing wall boundary conditions for the Euler equations of gas dynamics in the context of unstructured meshes. Both (a) strong formulation, where the zero normal velocity on the wall is enforced explicitly and (b) weak formulation, where the zero normal velocity on the wall is enforced through the flux function are discussed. Taking advantage of both approaches, mixed procedures are defined. The new wall boundary treatments are accurate and can be applied to any approximate Riemann solver. Numerical comparisons for various flow regimes, from subsonic to supersonic, and for various approximate Riemann solvers point out that the mixed boundary procedures drastically improve the accuracy. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
An incompressible Navier–Stokes solver based on a cell‐centre finite volume formulation for unstructured triangular meshes is developed and tested. The solution methodology makes use of pseudocompressibility, whereby the convective terms are computed using a Godunov‐type second‐order upwind finite volume formulation. The evolution of the solution in time is obtained by subiterating the equations in pseudotime for each physical time step, with the pseudotime step set equal to infinity. For flows with a free surface the computational mesh is fitted to the free surface boundary at each time step, with the free surface elevation satisfying a kinematic boundary condition. A ‘leakage coefficient’, ε, is introduced for the calculation of flows with a free surface in order to control the leakage of flow through the free surface. This allows the assumption of stationarity of mesh points to be made during the course of pseudotime iteration. The solver is tested by comparing the output with a wide range of documented published results, both for flows with and without a free surface. The presented results show that the solver is robust. © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows. The project supported by the National Committee of Science and Technology, China, under the Special Funds for Major Basic Research Project (G2000077305 and G1999032801), and the National Natural Science Foundation of China (10325211)  相似文献   

10.
In this paper, we present an efficient semi-implicit scheme for the solution of the Reynolds-averaged Navier-Stokes equations for the simulation of hydrostatic and nonhydrostatic free surface flow problems. A staggered unstructured mesh composed by Voronoi polygons is used to pave the horizontal domain, whereas parallel layers are adopted along the vertical direction. Pressure, velocity, and vertical viscosity terms are taken implicitly, whereas the nonlinear convective terms as well as the horizontal viscous terms are discretized explicitly by using a semi-Lagrangian approach, which requires an interpolation of the three-dimensional velocity field to integrate the flow trajectories backward in time. To this purpose, a high-order reconstruction technique is proposed, which is based on a constrained least squares operator that guarantees a globally and pointwise divergence-free velocity field. A comparison with an analogous reconstruction, which is not divergence-free preserving, is also presented to give evidence of the new strategy. This allows the continuity equation to be satisfied up to machine precision even for high-order spatial discretizations. The reconstructed velocity field is then used for evaluating high-order terms of a Taylor method that is here adopted as ODE integrator for the flow trajectories. The proposed semi-implicit scheme is validated against a set of academic test problems, and proof of convergence up to fourth-order of accuracy in space is shown.  相似文献   

11.
The paper presents an efficient finite volume method for unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements for both single‐ and two‐phase flows. Mathematical model used in computations is based on the ensemble averaged conservation equations. These equations are solved for each phase and in case of single‐phase flow reduce to the transient Reynolds‐averaged Navier–Stokes (TRANS) equations. Transient flow induced by rotating impellers is thus resolved in time. The use of unstructured grids allows an easy and flexible meshing for the entire flow domain. Polyhedral cell volumes are created on the arbitrary mesh interface placed between rotating and static parts. Cells within the rotating parts move each time step and the new faces are created on the arbitrary interfaces only, while the rest of the domain remain ‘topologically’ unchanged. Implicit discretization scheme allows a wide range of time‐step sizes, which further reduce the computational effort. Special attention is given to the interpolation practices used for the reconstruction of the face quantities. Mass fluxes are recalculated at the beginning of each time step by using an interpolation scheme, which enhances the coupling between the pressure and velocity fields. The model has been implemented into the commercially available CFD code AVL SWIFT (AVL AST, SWIFT Manual 3.1, AVL List GmbH, Graz, Austria, 2002). Single‐phase flow in a mixing vessel stirred by a six‐bladed Rushton‐type turbine and two‐phase flow in aerated stirred vessel with the four‐blade Rushton impeller are simulated. The results are compared with the available experimental data, and good agreement is observed. The proposed algorithm is proved to be both stable and accurate for single‐phase as well as for the two‐phase flows calculations. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This paper describes the use of adaptive hierarchical grids to predict incompressible separated flow at low Reynolds number. The grids consist of a quadtree system of hierarchical Cartesian meshes which are generated by recursive subdivision about seeding points. The governing equations are discretized in collocated primitive variable form using finite volumes and solved using a pressure correction scheme. The mesh is locally adapted at each time step, with panel division or removal dependent on the vorticity magnitude. The resulting grids have fine local resolution and are economical in array size. Results are presented for unidirectional, impulsively started flow past a circular and a square cylinder at various Reynolds numbers up to 5000 and 250 respectively. It is clear that hierarchical meshes may offer gains in efficiency when applied to complex flow domains or strongly sheared flows. However, as expected, the stepped approximation to curved boundaries resulting from the Cartesian quadtree representation adversely affects the accuracy of the results for flow past a circular cylinder. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The performance of a constant-temperature normal hotwire in a supersonic flow is critically examined. It is shown that this instrument is inherently unsuitable for measuring turbulent temperature correlations because of the highly non-linear response to temperature fluctuations, particularly at low overheat ratios. The instrument is therefore limited to measurements of mean and fluctuating mass-flow rates. Suitable calibration procedures. as well as the limits on spatial and temporal resolution are discussed. and corrections for mean stagnation temperature changes are suggested. The instrument was used to measure the mass-flow fluctuations in a zero pressure gradient Mach 2.9 turbulent boundary layer. A comparison with the available data suggests good agreement.  相似文献   

15.
Constant temperature hot-wire anemometer practice in supersonic flows   总被引:1,自引:0,他引:1  
The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that empirical heat transfer correlations commonly used for calibrating hot wires in subsonic flow cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. The instrument was used to measure the mass-weighted Reynolds shear stress in a zero pressure gradient Mach 2.9 turbulent boundary layer. A comparison with the available data suggests good agreement, as long as the normal Mach number remains supersonic under all conditions.  相似文献   

16.
17.
 During the exposure process of photolithography, wafer absorbs the exposure energy, which results in rising temperature and the phenomenon of thermal expansion. This phenomenon was often neglected due to its limited effect in the previous generation of process. However, in the new generation of process, it may very likely become a factor to be considered. In this paper, the finite element model for analyzing the transient behavior of the distribution of wafer temperature during exposure was established under the assumption that the wafer was clamped by a vacuum chuck without warpage. The model is capable of simulating the distribution of the wafer temperature under different exposure conditions. The flowchart of analysis begins with the simulation of transient behavior in a single exposure region to the variation of exposure energy, interval of exposure locations and interval of exposure time under continuous exposure to investigate the distribution of wafer temperature. The simulation results indicate that widening the interval of exposure locations has a greater impact in improving the distribution of wafer temperature than extending the interval of exposure time between neighboring image fields. Besides, as long as the distance between the field center locations of two neighboring exposure regions exceeds the straight distance equals to three image fields wide, the interacting thermal effect during wafer exposure can be ignored. The analysis flow proposed in this paper can serve as a supporting reference tool for engineers in planning exposure paths. Received on 11 October 2000 / Published online: 29 November 2001  相似文献   

18.
This paper is devoted to the numerical approximation of a hyperbolic non‐equilibrium multiphase flow model with different velocities on moving meshes. Such goal poses several difficulties. The presence of different flow velocities in conjunction with cell velocities poses difficulties for upwinding fluxes. Another issue is related to the presence of non‐conservative terms. To solve these difficulties, the discrete equations method (J. Comput. Phys. 2003; 186 (2):361–396; J. Fluid. Mech. 2003; 495 :283–321; J. Comput. Phys. 2004; 196 :490–538; J. Comput. Phys. 2005; 205 :567–610) is employed and generalized to the context of moving cells. The complementary conservation laws, available for the mixture, are used to determine the velocities of the cells boundaries. With these extensions, an accurate and robust multiphase flow method on moving meshes is obtained and validated over several test problems with exact or experimental solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
20.
On the basis of an analysis of the pseudoturbulent motion of both the suspended particles and the carrier fluid, the normal stress components in the dispersed phase are obtained for the problem of inclined confined flows of finely dispersed suspensions and colloids. These hydrodynamic pulsations are due to the shear and the work done by the average relative flow of the fluid phase on random concentration fluctuations of the disperse system because of the substantial slip of the phases of the suspension under gravity. The momentum conservation equations for the particles are obtained with allowance for the angle of inclination of the flow to the vertical and on the basis of these equations the suspension capacity of the flow as a function of the angle of inclination, particle size, Galileo number and other parameters is illustrated.Ekaterinburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 78–84, January–February, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号