首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entropy production in stochastic mechanical systems is examined here with strict bounds on its rate. Stochastic mechanical systems include pure diffusions in Euclidean space or on Lie groups, as well as systems evolving on phase space for which the fluctuation-dissipation theorem applies, i.e., return-to-equilibrium processes. Two separate ways for ensembles of such mechanical systems forced by noise to reach equilibrium are examined here. First, a restorative potential and damping can be applied, leading to a classical return-to-equilibrium process wherein energy taken out by damping can balance the energy going in from the noise. Second, the process evolves on a compact configuration space (such as random walks on spheres, torsion angles in chain molecules, and rotational Brownian motion) lead to long-time solutions that are constant over the configuration space, regardless of whether or not damping and random forcing balance. This is a kind of potential-free equilibrium distribution resulting from topological constraints. Inertial and noninertial (kinematic) systems are considered. These systems can consist of unconstrained particles or more complex systems with constraints, such as rigid-bodies or linkages. These more complicated systems evolve on Lie groups and model phenomena such as rotational Brownian motion and nonholonomic robotic systems. In all cases, it is shown that the rate of entropy production is closely related to the appropriate concept of Fisher information matrix of the probability density defined by the Fokker–Planck equation. Classical results from information theory are then repurposed to provide computable bounds on the rate of entropy production in stochastic mechanical systems.  相似文献   

2.
The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order in the temperature: all of them are obtained. Finally, some features about the physical behavior of the models are pointed out.This revised version was published online in April 2005. The publishing date was inserted.  相似文献   

3.
4.
The concept of ergodicity and its application to microcanonical systems composed of few particles of different mases are clarified. The distribution functions in position and velocity are theoretically derived and numerically verified. Moreover, we deal with a one-dimensional Boltzmann gas where the order relation (connected to the one dimensionality) brings constraints depending on the two classes of boundary conditions enforced (reflecting, periodic). The numerical simulations on a one-dimensional Boltzmann gas act as real experiments and allow us to play on the constraints to which the system is subjected.  相似文献   

5.
We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields, and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetization profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive, can be rescaled to the equilibrium result.  相似文献   

6.

We propose the concept of global temperature for spatially non-uniform heat conduction systems. With this novel quantity, we present an extended framework of thermodynamics for the whole system such that the fundamental relation of thermodynamics holds, which we call “global thermodynamics” for heat conduction systems. Associated with this global thermodynamics, we formulate a variational principle for determining thermodynamic properties of the liquid-gas phase coexistence in heat conduction, which corresponds to the natural extension of the Maxwell construction for equilibrium systems. We quantitatively predict that the temperature of the liquid–gas interface deviates from the equilibrium transition temperature. This result indicates that a super-cooled gas stably appears near the interface.

  相似文献   

7.
The equilibrium distribution of a Lorentz gas (“electrons”) interacting with an inhomogenous thermostat (“atoms”) is examined with consideration of 1) the concept of volumes available and forbidden for the gas particles and 2) the solution of the kinetic equation. Analytical calculations for “electrons” and “atoms” repelling each other with the force ≈r−5 (where r is the distance between the particles) have shown that the coordinate- and velocity-dependent variables in the distribution function cannot be separated. In particular, this leads to the dependence of the average kinetic energy per “electron” on the coordinate: it is higher in the region with higher density of the “atoms”. It is assumed that the Gibbs distribution does not describe the properties of the system under consideration, because in this case the interaction between the system and thermostat cannot be considered small. Scientific-Research Physical-Technical Institute at N. I. Lobachevskii Nizhnii Novgorod State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 38–43, June, 1999.  相似文献   

8.
We state a condition for an observer to be comoving with another observer in general relativity, based on the concept of lightlike simultaneity. Taking into account this condition, we study relative velocities, Doppler effect and light aberration. We obtain that comoving observers observe the same light ray with the same frequency and direction, and so gravitational redshift effect is a particular case of Doppler effect. We also define a distance between an observer and the events that it observes, called lightlike distance, obtaining geometrical properties. We show that lightlike distance is a particular case of radar distance in the Minkowski space-time and generalizes the proper radial distance in the Schwarzschild space-time. Finally, we show that lightlike distance gives us a new concept of distance in Robertson–Walker space-times, according to Hubble law.  相似文献   

9.
In multi-agent system (MAS), the communication topology of agent network plays a very important role in its consensus problem. To describe the communication topologies of MAS, a class of evolving network models with the concept of physical position neighbourhood connectivity are proposed and studied in this paper. The analysis and simulation results for network parameters such as the first nonzero eigenvalue and maximal eigenvalue of graph Laplacian matrix, clustering coefficients, average distances and degree distributions for different evolving parameters of these models are presented. The dynamical behaviour of each node on the consensus problem is also studied. It was found that the time to reach consensus becomes shorter sharply with the increasing of neighbourhood depth of the nodes in these models. And it was also found that for the maximal distance preferential attachment model (Model 3), the synthetic characteristic, such as robustness to communication delay, as well as convergence speed in consensus problem, is the best in all these models.  相似文献   

10.
11.
The variation of flow-variables with distance, in the flow-field behind a shock wave propagating in a dusty gas with exponentially varying density, are obtained at different times. The equilibrium flow conditions are assumed to be maintained, and the results are compared with those obtained for a perfect gas. It is found that the presence of small solid particles in the medium has significant effects on the variation of density and pressure. Received 20 October 1999 and Received in final form 9 March 2000  相似文献   

12.
We consider a one-dimensional gas of hard point particles in a finite box that are in thermal equilibrium and evolving under Hamiltonian dynamics. Tagged particle correlation functions of the middle particle are studied. For the special case where all particles have the same mass, we obtain analytic results for the velocity auto-correlation function in the short time diffusive regime and the long time approach to the saturation value when finite-size effects become relevant. In the case where the masses are unequal, numerical simulations indicate sub-diffusive behaviour with mean square displacement of the tagged particle growing as t/ln(t) with time t. Also various correlation functions, involving the velocity and position of the tagged particle, show damped oscillations at long times that are absent for the equal mass case.  相似文献   

13.
We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acoustic oscillation data and cosmic microwave background shift data. Cosmological models are investigated considering cosmic fluid which is an extension of Chaplygin gas, however, it reduces to modified Chaplygin gas (MCG) and also to generalized Chaplygin gas (GCG) in special cases. It is found that in the case of MCG and GCG, the best-fit values of all the parameters are positive. The distance modulus agrees quite well with the experimental Union2 data. The speed of sound obtained in the model is small, necessary for structure formation. We also determine the observational constraints on the constants of the ECG equation.  相似文献   

14.
This paper considers the polynomial and polytropic approximations in the equation of equilibrium post-Newtonian rotating configurations of a degenerate neutron gas. The concept of a configuration-averaged polytropic index is introduced.  相似文献   

15.
The cooling of the metal cluster Pd13 in an atmosphere of rare gas has been studied by means of computer simulation. By simulation, the average energy transfer in collisions between one cluster and one gas atom has been obtained. Emphasis has been placed on conditions when the temperatures of the colliding species are almost equal. All modes of motion, inclusive the translation, must be considered in order to obtain vanishing energy transfer at equilibrium. A simulation scheme is presented by which the energy transfer is zero to the cluster when the gas and the cluster temperatures are equal. At equilibrium the energy transfer does however not vanish for all impact parameters. In the collisions with Pd13, the cluster is heated by collisions with a small impact parameter but equally cooled by collisions with a large impact parameter. Argon and krypton are found to cool Pd13 equally efficiently while neon and helium are less efficient cooling agents. Received 28 September 2001 / Received in final form 8 August 2002 Published online 12 November 2002 RID="a" ID="a"e-mail: JanW@phc.gu.se  相似文献   

16.
J.M. Rickman 《Physica A》2011,390(3):456-462
Tracer diffusion in an alloy in which the trajectories of one of the species is biased is examined as a model of mass transport with attendant segregation to extended defects (e.g., dynamic strain ageing, grain-boundary segregation). More specifically, we employ Monte Carlo simulation to describe the nonequilibrium diffusive behavior of the components of a two-dimensional lattice gas comprising A and B atoms wherein one of the species (B) interacts with randomly distributed line defects to create equilibrium atmospheres at late times. Various kinetic assumptions and defect densities are explored to highlight the role of B-atom mobility and defect interaction strength on the transport behavior of the A atoms. From the calculated instantaneous diffusivity, several diffusive regimes are then identified and related to evolving segregation profiles and, in particular, to the free area available for diffusion.  相似文献   

17.
冯仕猛 《大学物理》2021,40(4):8-10
大学物理教学的一个基本点是培养学生的空间想象力.麦克斯韦速率分布律是气体分子运动论的中心内容,是大学物理气体运动理论中讲授的一个难点,其公式抽象、繁难,学生不易理解.本文根据速度空间概念,给出速度球的表面积相当于气体分子微观状态数的观点,利用拉郎格日函数,推导理想气体平衡态下气体分子的速率分布函数.这种推导方法相对比较...  相似文献   

18.
Many social, technological, biological and economical systems are properly described by evolved network models. In this paper, a new evolving network model with the concept of physical position neighbourhood connectivity is proposed and studied. This concept exists in many real complex networks such as communication networks. The simulation results for network parameters such as the first nonzero eigenvalue and maximal eigenvalue of the graph Laplacian, clustering coefficients, average distances and degree distributions for different evolving parameters of this model are presented. The dynamical behaviour of each node on the consensus problem is also studied. It is found that the degree distribution of this new model represents a transition between power-law and exponential scaling, while the Barábasi-Albert scale-free model is only one of its special (limiting) cases. It is also found that the time to reach a consensus becomes shorter sharply with increasing of neighbourhood scale of the nodes.  相似文献   

19.
把玻耳兹曼分布定律应用于固相表现短程引力场并结合平均的概念给出了范德瓦耳斯方程,讨论了固相表现短程引力场对固-气相间压力的影响。  相似文献   

20.
Effects of the system temperature on dust aggregation in plasmas are investigated using two‐dimensional molecular dynamics simulations. It is shown that as the system temperature increases, the boundary of the clusters becomes gradually irregular (i.e., deviating from sphere‐like), and the cluster system gradually changes from solid to liquid and finally to gas state. The mean square displacement, mean nearest‐neighbor distance in the clusters, cluster size and coupling parameter of the system are obtained and the properties of the system structure and dynamics are investigated. The time τ needed for reaching equilibrium for different temperatures is obtained. It is shown that τ firstly decreases and then increases with the temperature, indicating that there is an optimum temperature allowing a dust aggregation to reach an equilibrium state most rapidly. The simulation results agree qualitatively with the experimental observations. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号