首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of the copper-based catalysts, Cu2+ /SiO2,Cu2+ /Vycor and Cu2+/ZSM-5, and V2O5/TiO2 for NO conversion to N2 in the presence or absence of NH3 and/or O2 have been investigated. The Cu2+ /ZSM-5 catalyst exhibited the highest activity, even higher than that of V2O5/TiO2. Photoluminescence studies of the dehydrated copper-based catalysts have suggested that the copper ions anchored onto ZSM-5 locate as isolated copper species near Brönsted sites in the zeolite channels while the copper ions anchored onto Vycor and SiO2 locate mainly as copper dimer forms. These results suggest the role of copper ions which are stabilized with near-lying oxygen vacancies created by dehydroxylation of the zeolite, in NO conversion. As a result, it may be concluded that the isolated copper ions near Brönsted sites play a significant role in NO conversion but dimeric or polynuclear copper species are less effective for the reaction.  相似文献   

2.
Studies on Oxide Catalysts. XXV. Catalytic Activity and Aging Properties of Modified Mordenites in the Cracking of n-Octane MeH-mordenites (Me = Li, K, Mg, Ca, Ba) were prepared by ion exchange starting with H-mordenite (SiO2/Al2O3 mole ratio = 14). To characterize these samples the cracking of n-octane was used as catalytic test reaction. Surface OH groups and the adsorption of NH3 on these samples were investigated by i. r. spectroscopy. Unaffected by the kind of the exchanged cation the Brönsted acidity of the H-mordenite decreases monotonously with increasing content of the incorporated cation. The catalytic activity and (to a much higher degree) the rate of deactivation by coking during the reaction decrease as the Brönsted acidity decreases. The strong dependence of the Brönsted acidity on the deactivation rate points to a multi-site mechanism of the coking process.  相似文献   

3.
Aluminum was doped into amorphous silica gel to modify its surface structure. The obtained SiO2-Al2O3 support was used to prepare the CuCl/SiO2-Al2O3 catalyst by solid-state ion exchange, and the catalyst activity for liquid-phase oxidative carbonylation of methanol to dimethyl carbonate was investigated. The results showed that the prepared SiO2-Al2O3 support kept the amorphous structure of the silica gel. The BET specific surface area of the silica gel was decreased to 200 m2/g, and the surface acid sites (including Brønsted acid sites) were increased. In the CuCl/SiO2-Al2O3 catalyst, CuCl was not only dispersed on surface but also was ion exchanged with surface Brønsted acid sites of the SiO2-Al2O3 support to form Cu+ species, which resulted in a decrease in BET specific surface area to 148 m2/g. These two kinds of Cu+ species on the catalyst surface were both active centers for the oxidative carbonylation of methanol to dimethyl carbonate. When the catalyst was prepared with Si/Al molar ratio of 5 and was calcined at 500 °C, the selectivity and space-time yield of dimethyl carbonate reached 74% and 1.27 g/(g·h), respectively.  相似文献   

4.
In the interaction of hydrogen with 2-methylthiophene in the gas phase over palladium sulfide catalysts at 180–260?C and 0.1–0.8 MPa, the saturation of the thiophene ring resulting in 2-methylthiolane and the hydrogenolysis of 2-methylthiophene occurs. When the conversion is lower than 60%, these reactions occur independently; at higher conversions, methylthiolane also undergoes hydrogenolysis. The specific catalytic activity of PdS supported on γ-Al2O3, TiO2, and carbon and without support is much lower in the hydrogenation of 2-methylthiophene than the activity of PdS supported on SiO2, aluminosilicate, and zeolite HNaY having strong Brönsted acid surface sites.  相似文献   

5.
The effect of the type of the support and the amount of V2O5 loading on the activity of V2O5/γ-Al2O3 catalyst for the dehydrogenation of isobutane have been investigated. Based on the experimental results of TPR, XRD and ESR spectroscopy, it is suggested that there are strong interactions between vanadia and carrier and that the V4+ species on the surface is the active site of V2O5/γ-Al2O3 for this reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3) on vanadium‐based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time‐resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta–titania (V2O5‐WO3‐TiO2), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono‐oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3. We were also able to verify the formation of the nitrosamide (NH2NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance.  相似文献   

7.
The effects of binder, coking and regeneration on the acid properties of H-mordenite zeolite during toluene disproportionation reaction (TDP) have been investigated by solid-state 31P-MAS-NMR of various adsorbed phosphorous probe molecules in conjunction with elemental analysis by ICP-MS technique. A series of fresh, spent and regenerated mordenite-based commercial catalysts were examined and the results were also compared with binder-free H-mordenite zeolite and unformulated γ-alumina binder. It is found that parent H-mordenite zeolite possessed only Brønsted acidity, which is responsible for the observed catalytic activity. In contrast, the γ-Al2O3 binder exhibited only Lewis acidity and plays a minor role during the catalytic reaction. While the amount of strong Brønsted acid sites decreased rapidly during initial coking, it reached a plateau at a total coke content of ca. 7 wt%, corresponding to ca. 80% decrease in total acidity. That the catalyst remained active even under deep coke deposition (>7 wt%) condition indicated catalytic activity may be invoked by subsequent coking taking place on the external surface rather than intracrystalline channels of the zeolite catalyst. Furthermore, upon catalyst regeneration treatment, ca. 75% of the total acidity could be effectively recovered.  相似文献   

8.
The influence of ZSM-5 (SiO2/Al2O3 = 50) treatment with a tetrabutylamine hydroxide (TBAOH)/NaOH mixture having different mole ratios on its physicochemical properties and catalytic performance in the reaction of methanol to gasoline (MTG) was investigated. It was found that, with increasing ratio TBA+/OH, the crystallinities, micropore surface areas, micropore volumes, the amounts of strong acid sites and Brönsted acid sites gradually increased, and the mesopore volumes decreased. The treatment with pure TBAOH (TBA+/OH = 1.0) ensured the formation of narrow and uniform intracrystalline mesoporosity and the large amounts of strong or Brönsted acid sites on the zeolite, which contribute to the highest liquid hydrocarbon yield in the reaction of MTG.  相似文献   

9.
The dispersion state and catalytic properties of anatase-supported vanadia species are studied by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), H2 temperature-programmed reduction (TPR) and the selective oxidation of o-xylene to phthalic anhydride. The almost identical values of the experimental dispersion capacity of V2O5 on anatase and the surface vacant sites available on the preferentially exposed (001) plane of anatase suggest that the highly dispersed vanadium cations are bonded to the vacant sites on the surface of anatase as derived by the incorporation model. When the loading amount of V2O5 is far below its dispersion capacity, the dispersed vanadia species might mainly consist of isolated VOx species bridging to the surface through V-O-Ti bonds. With the increase of V2O5 loading the isolated vanadia species interact with their nearest neighbors (either isolated or polymerized vanadia) through bridging V-O-V at the expenses of V-O-Ti bonds, resulting in the increase of the ratio of polymerized to isolated vanadia species and the decrease of the reactivity of the associated surface oxygen anions and, consequently, although the activity increases with loading to reach a maximum value, the turn over number (TON) of the V2O5/TiO2 catalyst decreases linearly. When the loading amount of V2O5 is higher than its dispersion capacity, the turn over number decreases more rapidly with the increase of V2O5 loading due to the formation of V2O5 crystallites in which the oxygen anions associated with V-O-V bonds are less reactive and only partially exposed on the surface.  相似文献   

10.
Effect of Alkali Contamination on the Catalytic Properties of Al2O3? Si2 Catalytic properties of amorphous Al2O3? SiO2 catalysts containing different amounts of Al2O3 in dehydration of isopropanol and cracking of cumene were examined after a defined contamination of the acid centers by sodium ethylate from alcoholic solution. In both reactions, the catalytic activity is decreased by treatment with sodium ethylate, the cracking of cumene being suppressed at a lower alkali concentration than the dehydration of isopropanol. In dehydration of isopropanol, the dependence of the catalytic activity on the alkali content is influenced strongly by the Al2O3 content of the catalysts. In the cracking of cumene, strongly acid Brönsted centers are active, whereas the dehydration of isopropanol proceeds by joint action of acid Lewis or Brönsted centers, respectively, with basic centers at the surface of the catalyst (hydroxide groups or oxygen anions).  相似文献   

11.
    
In this study the V2O5/-Al2O3 catalysts were prepared by the grafting method. Their Brönsted and Lewis acid sites were investigated with pyridine adsorption using infrared spectroscopic techniques. It was concluded that when the catalysts composition of the active component V2O5 increased, the supporting material -Al2O3 was covered by a monolayer of V2O5. When the amount of active component was over 11.8 wt.%, the supporting material was covered as multilayer.It was also concluded that after pyridine adsorption, the number of Lewis acid sites of V2O5/-Al2O3 catalyst decreased with increasing V2O5 content. The number of the Brönsted acid sites of the V2O5/-Al2O3 catalyst showed an increase with increasing V2O5 content and reached a maximum for the catalyst with 11.8 wt.% V2O5. Upon further increase of V2O5 content, the number of the Brönsted acid sites decreased.  相似文献   

12.
The catalytic dehydrocondensation of methane to aromatics such as benzene and naphthalene was studied on the Mo carbide catalysts supported on micro- and mesoporous materials such as HZSM-5 (0.6 nm) and FSM-16 (2.7 nm). The Mo catalysts supported on H-ZSM-5 having appropriate micropores (0.6 nm size) and Si/Al ratios (20-70) exhibit higher yields (90-150 nmol/g-cat/s) and selectivities (higher than 74% on the carbon basis) in methane conversion to aromatic products such as benzene and naphthalene at 973 K and 1 atm, although they are drastically deactivated because of substantial coke formation. It was demonstrated that the CO/CO2 addition to methane effectively improves the catalyst performance by keeping a higher methane conversion and selectivities of benzene formation in the prolonged time-on-stream. The oxygen derived from CO and CO2 dissociation suppresses polycondensation of aromatic products and coke formation in the course of methane conversion. XAFS and TG/DTA/mass-spectrometric studies reveal that the zeolite-supported Mo oxide is endothermally converted under the action of methane around 955 K to nanosized particles of molybdenum carbide (Mo2C) (Mo-C, coordination number = 1,R- 2.09 å; Mo-Mo, coordination number = 2.3–3.5;R = 2.98 å). The SEM pictures showed that the nanostructured Mo carbide particles are highly dispersed on and inside the HZSM-5 crystals. On the other hand, it was demonstrated by IR measurements of pyridine adsorption that the Mo/HZSM-5 catalysts having the optimum SiO2/Al2O3 ratios around 40 show the maximum Brönsted acidity among the catalysts with the SiO2/Al2O3 ratios of 20–1900. There is a close correlation between the activity of benzene formation in the methane aromatization and the Brönsted acidity of HZSM-5 due to the bifunctional catalysis.  相似文献   

13.
用酸中和法制备了活性γ-Al2O3, 并在其表面负载SO3得到固体酸催化剂SO3/γ-Al2O3, 用XRD, TG-DTA, FT-IR,NMR, NH3-TPD等对其进行了结构和酸性研究. 结果表明: 在SO3/γ-Al2O3的制备过程中形成少量的Al2(SO4)3, 同时SO3与γ-Al2O3表面上的羟基反应, 形成强的Brönsted酸位, 根据1H/27Al 双共振(TRAPDOR)MAS NMR与FT-IR实验结果提出了Brönsted酸结构模型. SO3/γ-Al2O3表面存在两种不同强度的酸中心, 其酸强度大于分子筛HZSM-5, 但弱于传统的固体超强酸 /γ-Al2O3.  相似文献   

14.
The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts.  相似文献   

15.
Adsorption of pyridine on the MoO3/TiO2 and MoO3/Al2O3 systems has been studied by FTIR spectroscopy, in order to identify surface acid sites existing in samples with different molybdena loadings. The results show that both Lewis and Brönsted surface acid sites exist, whatever the molybdena loading. The percentage of Brönsted sites is larger for loadings below the theoretical monolayer, and should correspond to bidimensional molybdenum oxides species, while for loadings above the monolayer these sites are associated with bulk MoO3.  相似文献   

16.
Ni contamination from crude oil in the fluid catalytic cracking (FCC) process is one of the primary sources of catalyst deactivation, thereby promoting dehydrogenation–hydrogenation and speeding up coke growth. Herein, single-particle X-ray fluorescence, diffraction and absorption (μXRF-μXRD-μXAS) tomography is used in combination with confocal fluorescence microscopy (CFM) after thiophene staining to spatially resolve Ni interaction with catalyst components and study zeolite degradation, including the processes of dealumination and Brønsted acid sites distribution changes. The comparison between a Ni-lean particle, exposed to hydrotreated feedstock, and a Ni-rich one, exposed to non-hydrotreated feedstock, reveals a preferential interaction of Ni, found in co-localization with Fe, with the γ-Al2O3 matrix, leading to the formation of spinel-type hotspots. Although both particles show similar surface zeolite degradation, the Ni-rich particle displays higher dealumination and a clear Brønsted acidity drop.  相似文献   

17.
With P(CH3)3 as the probe molecule adsorbed on titanium silicalite (TS-1) zeolite, the special and important role of T12 site in MFI-type zeolite was clearly elucidated. There are altogether three active sites present in TS-1 zeolite with Ti at the T12 site. Owing to the preferential adsorption of probe molecules on the first Brönsted acidic site, the Ti12 center will probably fail to show Lewis acidity. The ionic [HP(CH3)3]+ species can be stabilized by the first or second Brönsted acidic site, with the former energetically favored. The latter was formed through the transfer of the ionic [HP(CH3)3]+ species from the first to the second Brönsted acidic site.  相似文献   

18.
The effect of temperature on the adsorption/desorption of ammonia from the air mixture on the surface of γ-Al2O3, TiO2 (anatase) and alumina-supported vanadia catalyst samples has been investigated using temperature-programmed desorption (TPD). When the vanadia loading was increased, the fraction of the acid sites providing the NH3 adsorption in the high-temperature state decreased. At the same time, the fraction of the medium temperature state significantly increased.  相似文献   

19.
Infrared spectra of ammonia adsorbed on CoO, NiO, SiO2, CaO, MgO, ZrO2, ZnO, TiO2, BeO and Al2O3, have been studied in the NH stretching and bending vibration regions at various stages of sample dehydroxylation. Several types of adsorption were found: hydrogen bonding to surface oxygen atoms or hydroxyl groups, coordination to Lewis acid sites and coordination plus hydrogen bonding; on some oxides ammonia molecules dissociate to produce surface NH2 and OH groups. Frequencies characteristic of the distinct adsorbed species were determined. Except for Al2O3, no evidence was found for Brönsted acid sites on the surface of the above oxides.  相似文献   

20.
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77 K, X-ray Diffractometry (XRD), Scanning Electronic Microscopy (SEM/EDX) and Fourier Transform Infrared Spectroscopy (FT-IR). The surface area increases with the vanadia loading from 24 m2 g–1 for pure TiO2 to 87 m2 g–1 for 9 wt% of V2O5. The rutile form is predominant for pure TiO2 but becomes enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the diffractograms of the catalysts. Analysis by SEM showed heterogeneous granulation of particles with high vanadium dispersion. Two species of surface vanadium were observed by FT-IR spectroscopy: a monomeric vanadyl and polymeric vanadates. The vanadyl/vanadate ratio remains practically constant. Ethanol oxidation was used as a catalytic test in a temperature range from 350 to 560 K. The catalytic activity starts around 380 K. For the sample with 9 wt% of vanadia, the conversion of ethanol into acetaldehyde as the main product was approximately 90% at 473 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号