首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A k-tree of a graph is a spanning tree with maximum degree at most k. We give sufficient conditions for a graph G to have a k-tree with specified leaves: Let k,s, and n be integers such that k≥2, 0≤sk, and ns+1. Suppose that (1) G is (s+1)-connected and the degree sum of any k independent vertices of G is at least |G|+(k−1)s−1, or (2) G is n-connected and the independence number of G is at most (ns)(k−1)+1. Then for any s specified vertices of G, G has a k-tree containing them as leaves. We also discuss the sharpness of the results. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 15740077, 2005 This research was partially supported by the Japan Society for the Promotion of Science for Young Scientists.  相似文献   

2.
In this article, we show that for any simple, bridgeless graph G on n vertices, there is a family ?? of at most n?1 cycles which cover the edges of G at least twice. A similar, dual result is also proven for cocycles namely: for any loopless graph G on n vertices and ε edges having cogirth g*?3 and k(G) components, there is a family of at most ε?n+k(G) cocycles which cover the edges of G at least twice. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 270–284, 2010  相似文献   

3.
Let Gn,m,k denote the space of simple graphs with n vertices, m edges, and minimum degree at least k, each graph G being equiprobable. Let G have property Ak, if G contains ⌊(k − 1)/2⌋ edge disjoint Hamilton cycles, and, if k is even, a further edge disjoint matching of size ⌊n/2⌋. We prove that, for k ≥ 3, there is a constant Ck such that if 2mCkn then Ak occurs in Gn,m,k with probability tending to 1 as n → ∞. © 2000 John Wiley & Sons, Inc. J. Graph Theory 34: 42–59, 2000  相似文献   

4.
A near perfect matching is a matching saturating all but one vertex in a graph. Let G be a connected graph. If any n independent edges in G are contained in a near perfect matching where n is a positive integer and n(|V(G)|-2)/2, then G is said to be defect n-extendable. If deleting any k vertices in G where k|V(G)|-2, the remaining graph has a perfect matching, then G is a k-critical graph. This paper first shows that the connectivity of defect n-extendable graphs can be any integer. Then the characterizations of defect n-extendable graphs and (2k+1)-critical graphs using M-alternating paths are presented.  相似文献   

5.
We present a new recursive construction for difference matrices whose application allows us to improve some results by D. Jungnickel. For instance, we prove that for any Abelian p-group G of type (n1, n2, …, nt) there exists a (G, pe, 1) difference matrix with e = Also, we prove that for any group G there exists a (G, p, 1) difference matrix where p is the smallest prime dividing |G|. Difference matrices are then used for constructing, recursively, relative difference families. We revisit some constructions by M. J. Colbourn, C. J. Colbourn, D. Jungnickel, K. T. Phelps, and R. M. Wilson. Combining them we get, in particular, the existence of a multiplier (G, k, λ)-DF for any Abelian group G of nonsquare-free order, whenever there exists a (p, k, λ)-DF for each prime p dividing |G|. Then we focus our attention on a recent construction by M. Jimbo. We improve this construction and prove, as a corollary, the existence of a (G, k, λ)-DF for any group G under the same conditions as above. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 165–182, 1998  相似文献   

6.
A graph G has property A(m, n, k) if for any sequence of m + n distinct points of G, there are at least k other points, each of which is adjacent to the first m points of the sequence but not adjacent to any of the latter n points. the minimum order among all graphs with property A(m, n, k) is denoted a(m, n, k). Bounds are given on the numbers a(m, n, k) and some exact results are indicated.  相似文献   

7.
It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.  相似文献   

8.
Let k be an integer with k ≥ 2 and G a graph with order n > 4k. We prove that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a vertex cover with exactly k components such that k−1 of them are chorded 4-cycles. The degree condition is sharp in general.  相似文献   

9.
10.
Faudree and Schelp conjectured that for any two vertices x, y in a Hamiltonian-connected graph G and for any integer k, where n/2 ? k ? n ? 1, G has a path of length k connecting x and y. However, we show in this paper that there are infinitely many exceptions to this conjecture and we comment on some problems on path length distribution raised by Faudree and Schelp.  相似文献   

11.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

12.
Let Gn,k denote the oriented grassmann manifold of orientedk-planes in ℝn. It is shown that for any continuous mapf: Gn,k → Gn,k, dim Gn,k = dim Gm,l = l(m −l), the Brouwer’s degree is zero, providedl > 1,n ≠ m. Similar results for continuous mapsg: ℂGm,l → ℂGn,k,h: ℍGm,l → ℍGn,k, 1 ≤ l < k ≤ n/2, k(n — k) = l(m — l) are also obtained.  相似文献   

13.
Paul Seymour conjectured that any graph G of order n and minimum degree at least contains the kth power of a Hamilton cycle. We prove the following approximate version. For any ϵ ≥ 0 and positive integer k, there is an n0 such that, if G has order nn0 and minimum degree at least $(\frac{k}{k+1} + \epsilon )n$, then G contains the kth power of a Hamilton cycle. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 167–176, 1998  相似文献   

14.
Let G be a connected claw-free graph on n vertices. Let ς3(G) be the minimum degree sum among triples of independent vertices in G. It is proved that if ς3(G) ≥ n − 3 then G is traceable or else G is one of graphs Gn each of which comprises three disjoint nontrivial complete graphs joined together by three additional edges which induce a triangle K3. Moreover, it is shown that for any integer k ≥ 4 there exists a positive integer ν(k) such that if ς3(G) ≥ nk, n > ν(k) and G is non-traceable, then G is a factor of a graph Gn. Consequently, the problem HAMILTONIAN PATH restricted to claw-free graphs G = (V, E) (which is known to be NP-complete) has linear time complexity O(|E|) provided that ς3(G) ≥ . This contrasts sharply with known results on NP-completeness among dense graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 75–86, 1998  相似文献   

15.
For a graph H, the H-coloring problem is to decide whether or not an instance graph G is homomorphic to H. The H-coloring problem is said to have bounded treewidth duality if there is an integer k such that for any graph G which is not homomorphic to H, there is a graph F of treewidth k which is homomorphic to G but not homomorphic to H. It is known that if the H-coloring problem has bounded treewidth duality then it is polynomial time decidable. We shall prove in this paper that for any integers m, k, there is an integer n0 such that if G is a graph of girth ≥ n0 then any graph F of treewidth k homomorphic to G is also homomorphic to C2m+1. It follows from this result that for non-bipartite graphs H, the H-coloring problems do not have bounded treewidth duality. We also present some classes of directed graphs H for which the H-coloring problems do not have bounded treewidth duality. In particular, there are oriented cycles H for which the H-coloring problems do not have bounded treewidth duality. This answers a question of Hell and Zhu (Siam J. Discrete Math., 8 (1995), 208–222). © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A labeling of graph G with a condition at distance two is an integer labeling of V(G) such that adjacent vertices have labels that differ by at least two, and vertices distance two apart have labels that differ by at least one. The lambda-number of G, λ(G), is the minimum span over all labelings of G with a condition at distance two. Let G(n, k) denote the set of all graphs with order n and lambda-number k. In this paper, we examine the sizes of graphs in G(n, k). We modify Chvàtal's result on non-hamiltonian graphs to obtain a formula for the minimum size of a graph in G(n, k), and we use an algorithmic approach to obtain a formula for the maximum size. Finally, we show that for any integer j between the maximum and minimum sizes there exists a graph with size j in G(n, k). © 1996 John Wiley & Sons, Inc.  相似文献   

17.
A graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths and of G from u to v are independent if u = u 1 = v 1, v = u v(G) = v v(G) , and u i ≠ v i for every 1 < iv(G). A set of hamiltonian paths, {P 1, P 2, . . . , P k }, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP(G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with nk ≥ 2. We use S n,k to denote the (n, k)-star graph. In this paper, we prove that IHP(S n,k ) = n–2 except for S 4,2 such that IHP(S 4,2) = 1.   相似文献   

18.
Let G be a graph of order n ≥ 5k + 2, where k is a positive integer. Suppose that the minimum degree of G is at least ?(n + k)/2?. We show that G contains k pentagons and a path such that they are vertex‐disjoint and cover all the vertices of G. Moreover, if n ≥ 5k + 7, then G contains k + 1 vertex‐disjoint cycles covering all the vertices of G such that k of them are pentagons. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 194–208, 2007  相似文献   

19.
Let k and n be two integers such that k ≥ 0 and n ≥ 3(k + 1). Let G be a graph of order n with minimum degree at least ?(n + k)/2?. Then G contains k + 1 independent cycles covering all the vertices of G such that k of them are triangles. © 1995, John Wiley & Sons, Inc.  相似文献   

20.
A graph is called fragile if it has a vertex cut which is also an independent set. Chen and Yu proved that every graph with n vertices and at most 2n?4 edges is fragile, which was conjectured to be true by Caro. However, their proof does not give any information on the number of vertices in the independent cuts. The purpose of this paper is to investigate when a graph has a small independent cut. We show that if G is a graph on n vertices and at most (12n/7)?3 edges, then G contains an independent cut S with ∣S∣≤3. Upper bounds on the number of edges of a graph having an independent cut of size 1 or 2 are also obtained. We also show that for any positive integer k, there is a positive number ε such that there are infinitely many graphs G with n vertices and at most (2?ε)n edges, but G has no independent cut with less than k vertices. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 327–341, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号