首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Conductive silver/silver bromide/polypyrrole nanoparticles were obtained by photopolymerization in o/w microemulsions of pyrrole monomer in the presence of silver nitrate as electron acceptor and dopant under UV light irradiation. The microemulsions were prepared using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. The particles were analyzed by scanning electron microscopy (SEM), UV/Vis, Fourier transform infrared spectroscopy, cyclic voltammetry, and X-ray diffraction (XRD). It was observed from SEM analysis that spherical particles can be obtained by this procedure with relatively narrow particles sizes distributions and average particle diameters of the silver cores (Dp) between 39 and 46 nm, which decreases as the surfactant concentration is increased. The conductivities of the resulting materials were between 0.12 and 0.40 S/m. Formation of cores of Ag and AgBr were observed from the XRD analysis, which was ascribed to the reduction of Ag+ to Ag0 and to reaction of Ag+ with the counterion of CTAB surfactant, respectively.  相似文献   

2.
Water-in-oil microemulsions have been used for the synthesis of a variety of nanoparticles since the technique was first introduced in 1982. In this paper we have reviewed several articles pertaining to the synthesis of nanoparticles in microemulsions and described in some detail our research efforts in the past decade in the field of synthesis of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors.  相似文献   

3.
A novel method of making silver nanoparticles in water-in-oil microemulsions using the surfactants as both the reducing agent and as the structure-directing agent is presented. Since no external strong reducing agent is used the kinetics of the formation is slow, which makes it possible to study the silver nanoparticle formation in situ. The microemulsions used were based on either the nonionic surfactant Brij30 (C12E4), which reduces the silver ion to metallic silver and is thereby partly oxidized, or mixtures of Brij30 and AOT (sodium bis(2-ethylhexyl) sulfosuccinate, where the latter does not reduce the silver ions. The influences of silver ion and nonionic surfactant concentrations on the formation kinetics of the nanoparticles were followed in situ using UV-vis spectroscopy, and both parameters were found to have a big influence. The microemulsion droplet's size, size distribution, and shape were examined by small-angle X-ray scattering (SAXS), and the formed silver nanoparticles were studied using both transmission electron microscopy and SAXS. The SAXS measurements showed that the presence of silver nitrate does not affect the microemulsion systems noticeably and that the droplet's size and shape are retained during the particle formation. It is shown that the size and morphology of the particles do not directly follow the shape and size of the microemulsion droplets even though there is a relation between the droplet size and the radii of the formed particles.  相似文献   

4.
Copolymers of 4-acryloylmorpholine with 2-dimethyl- and 2-diethylaminoethyl methacrylates of variable composition and molecular mass were prepared by free-radical copolymerization. The reactivity ratios of the comonomers were determined for the first time. The copolymers synthesized are capable to reduce Ag+ ions without using additional agents to form stable nanodispersions of zerovalent silver with spherical nanoparticles of 8–10 nm size.  相似文献   

5.
Microemulsions are suitable reaction media to prepare a wide variety of nanoparticles and provide control over their sizes. However, as typically used, microemulsions limit rates of rapid reactions and suffer from low reactant solubilization capacity. This work presents a new application of a novel approach aimed at minimizing these limitations. This approach, which was previously applied for AgCl nanoparticle preparation, involves solubilization of a bulk silver halide in the form of higher halides, by means of reaction with the surfactant counterion of a microemulsion, and the reprecipitation of silver halide nanoparticles in the water pools of individual reverse micelles. CTAB microemulsions were employed because they possess a reactive counterion and are known to have a high solubilization capacity for ionic reactants. Despite their high solubilization capacity, CTAB microemulsions achieved lower nanoparticles uptake (molar concentration of the colloidal nanoparticles) for the same surfactant concentration when compared to our previous study. The effect of the following variables on the nanoparticle uptake and the particle size was investigated: (1) operation variables, including rate of mixing and temperature; and (2) microemulsion variables, including CTAB and n-butanol concentrations, and water-to-surfactant mole ratio, R. These variables provide a comprehensive test to the proposed mechanism and expose the role of the surfactant layer rigidity. The nanoparticle uptake increased as the rate of mixing, temperature, and CTAB concentration increased, and decreased as n-butanol concentration and R increased. High n-butanol concentration and R values reduced the effective surfactant concentration and contributed to less surfactant layer rigidity and to particle aggregation.  相似文献   

6.
The formation processes, structure, geometric parameters, and conductivity are studied for thin composite films prepared from nanodispersions of silver particles with diameters smaller than 10 nm by the moving meniscus method. The thickness and conductivity of the films are determined as functions of the mass concentration of a precursor (AgNO3) and the concentration (size) of silver nanoparticles. Some of these functions are nonmonotonic. The dependences of the conductivity on these parameters are found to have the character of a percolation transition. Heterogeneous crystallization of soluble components of the colloidal solutions on silver nanoparticles plays an essential role in the formation of the films.  相似文献   

7.
The Maillard reaction is controlled by temperature, pH, reactant nature (sugars and amino acids), and water activity. We carried out reactions between glucose and leucine in U‐type nonionic microemulsions to obtain regioselectivity and control reaction rates. Reactants were oriented at the interface and water activity was adjusted using blends of surfactant and propylene glycol (PG). U‐type microemulsions, previously studied by us, served as microreactors for the Maillard reaction. The reactions in the microemulsion media were slower than those carried out in aqueous solution and formed unique aroma compounds. Reaction rates increased when using systems richer in water, as the water activity was enhanced. The surfactant plays a key role in determining water activity and reagent reactivity in all the microemulsions. The presence of PG slows the reaction, mainly when it resides at the interface, facilitating the formation of a bicontinuous structure. Phase transitions within the U‐type microemulsions were determined by viscosity and SD‐NMR and were correlated to the interfacial presence of the reactants and their reactivity.  相似文献   

8.
The nonaqueous ionic liquid (IL) microemulsions composed of 1-butyl-3-methylimidazolium tetrafluoroborate, Triton X-100, and toluene were prepared and the electrochemical properties of the nonaqueous IL microemulsions were investigated in this paper. It is shown that characteristics of the nonaqueous IL microemulsions such as electrical conductivity, electrochemical window, and solubility are good, which indicate that the nonaqueous IL microemulsions can be used as electrolyte for electrochemical research. The electrochemical properties of the nonaqueous IL microemulsions were researched by cyclic voltammetry (CV) and electrochemical impedance spectroscopy methods using potassium ferricyanide as electroactive probe. It was found that the reversibility was better and the peak current densities of CV were higher for the [Fe(CN)6]3−/[Fe(CN)6]4− electrode reaction in the nonaqueous IL microemulsions than those in IL. However, the electrochemical behavior of the probe in the nonaqueous IL microemulsions with different microenvironments (oil-in-IL, IL-in-oil, and bicontinuous) was different. The electrochemical property of the probe in the oil-in-IL microemulsion was the best, which was studied in detail.  相似文献   

9.
Stable microemulsions with water contents as high as 10 vol % have been obtained, including those additionally containing silver and gold nanoparticles. Especial attention has been focused on the influence of water and stabilizer contents on the structure of adsorption layers on nanoparticles. The properties of nanoparticles obtained via the traditional microemulsion synthesis have been compared with the properties of nanoparticles that have preliminarily been concentrated with the help of electrophoresis and dried. The electrophoretic concentration and drying of nanoparticles have been shown to improve the stability of their microemulsions. Microemulsions with the highest content of water have been studied to determine the occurrence of percolation and the influence of nanoparticles on their percolation temperature and electrical conductivity.  相似文献   

10.
Silver colloids of well-defined shape, size were synthesized by γ-ray irradiating silver salt in reversed microemulsions, and then pure silver dry powders were obtained. The sols were studied by absorption spectroscopy, and the silver powders were characterized by Transmission Electron Micrographs (TEM) and X-ray Diffraction (XRD). The effect of radiation dose and aging time was discussed.  相似文献   

11.
The effect of temperature (23–58°C) on the structure and conductivity of thin films obtained by the moving meniscus method from nanodispersions of silver particles with sizes of 6.5–70 nm has been studied. It has been shown that an increase in temperature leads to an exponential decrease in the specific conductivity of the films, with their thickness varying nonmonotonically. In the case of “large” particles, an increase in temperature decreases the efficiency of their deposition onto a substrate. The reasons for the observed regularities have been discussed.  相似文献   

12.
The decomposition reaction of the purple dye murexide in acidic media is used as a probe indicator for protons in nonionic microemulsions. The reaction kinetics primarily rely on the proton concentration and permit assessment of the proton activity in the nonionic microemulsions of water/cyclohexane/Igepal and water/heptane/Igepal. The experiments performed in the two microemulsions covered a wide range of water-to-oil mass fraction for the two systems. The kinetic runs were monitored under pseudo-first order conditions by the stopped-flow technique. The equilibrium constants for the formation of purpuric acid and the kinetic constants for the ensuing decomposition reaction fulfill a trend consistent with the micro compartmentalized nature of the multicomponent medium, and support the use of murexide as an indicator of the proton activity in microemulsions.  相似文献   

13.
张万忠  乔学亮  罗浪里  陈建国 《化学学报》2008,66(11):1377-1381
在琥珀酸二异辛酯磺酸钠(AOT)为表面活性剂、环己烷为连续相形成的微乳体系中, 利用水合肼还原AgNO3制备了分散性良好的纳米银. 利用紫外-可见(UV-Vis)光谱和透射电镜(TEM)对所得产物进行了表征, TEM显微图像表明形成粒子为球形结构, 平均粒径为5.10 nm, 标准偏差为2.84 nm. 分别利用正己烷、正庚烷、正辛烷、环己烷和十二烷等作连续介质, 研究了微乳液中连续相对纳米银形成的影响. 随着正烷烃碳链长度的增加, 微乳液中胶束之间的交换速率增大, 形成粒子的平均粒径逐渐减小. 十二烷形成的微乳体系制备的纳米银溶胶具有最宽的共振吸收峰, 所得的纳米银粒子平均粒径最小. 环己烷形成的微乳液中反胶束具有特殊的界面强度, 导致纳米银晶核的形成速率过低, 纳米银晶粒的生长不完全.  相似文献   

14.
Silver and silver iodide nanocrystals have been synthesized in the water-in-CO(2) reverse microemulsions formed by the commonly used surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), in the presence of 2,2,3,3,4,4,5,5-octafluoro-1-pentanol as cosurfactant. The nanometer-sized aqueous domains in the microemulsion cores not only act as nanoreactors, but the surfactant interfacial monolayer also helps the stabilization of the metal and semiconductor nanoparticles. The transmission electron microscopy results show that silver and silver iodide nanocrystals with average diameters of 6.0 nm (standard deviation, SD=1.3 nm) and 5.7 nm (SD=1.4 nm), respectively, were formed. The results indicate that the method can be utilized as a general and economically viable approach for the synthesis of metal and semiconductor quantum dots in environmentally benign supercritical carbon dioxide.  相似文献   

15.
微乳液聚合制备透明丙烯酸酯多孔共聚物   总被引:6,自引:0,他引:6  
李晓  高静  张卫英  刘振枫 《应用化学》2003,20(7):655-659
多孔聚丙烯酸酯;引发;微乳液聚合制备透明丙烯酸酯多孔共聚物  相似文献   

16.
Both ionic liquid (IL) and water are typical green solvents and have high electric conductivity. The use of IL microemulsions as templates and media for electrochemical synthesis of nano-materials is attractive. In this work, water-in-ionic liquid (W/IL) microemulsion and ionic liquid-in-water (IL/W) microemulsion were prepared, in which hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was used. The cyclic voltammetry (CV) behavior and electroplating in the W/IL and IL/W microemulsion systems containing silver nitrate were investigated for the first time. Both the CV curves exhibit the presence of reduction and oxidation peaks corresponding to the deposition and dissolution of silver from the two microemulsion systems. However, the CV obtained from IL/W microemulsion system exhibits a crossover, which is different from that obtained from W/IL microemulsion system. The electrodeposits obtained from W/IL microemulsion system are nano-granular, while those obtained from IL/W microemulsion system are planar. These results are attributed to the different microenvironments of the microemulsions.  相似文献   

17.
Major recent advances. Structured self-assembled liquids have been considered as efficient microreactors for organic and enzymatic reactions. Only recently scientists learned to use food-grade cosolvents and coemulsifiers together with hydrophilic non-ionic surfactants and to construct U-type phase diagrams with large isotropic regions ranging continuously from the oil-rich corner to the water-rich corner without any phase separation. The U-type microemulsions facilitate triggering and control of certain reactions by changing water activities. Maillard thermal degradation between sugars and amino acids is the main, and almost the only, chemical reaction that has been studied in food-grade microemulsions. Some examples of recent studies include: Maillard processes in binary structured fluids composed of monoglycerides of fatty acids and water forming microemulsions and lyotropic liquid crystalline structures; pseudoternary and pseudoquaternary W/O microemulsions; U-type microemulsions (W/O, O/W and bicontinuous microemulsions); enzymatic reactions aimed to prepare other surfactants such as sugar esters, monoglycerides and lysolecithins or triglycerides. Reactions in microreactors lead to unique new products. The reaction products and rates are controlled by the hydrophilicity/lipophilicity of the reagents (guest molecules), their molar ratios, type of oil phase, nature of surfactants and oil/surfactant ratios, nature of curvature and its elasticity (adjusted by cosolvent and coemulsifier) and by the water activity. The field is in its infancy and will need work of many more model reactions before it will be used in industrial food applications. Enzymatic reactions in non-food microemulsions are common practice but only few examples of food microemulsions as enzymatic microreactors have been extensively studied.  相似文献   

18.
Microemulsions are stable mixtures of a polar solvent, surfactant and an unpolar solvent. Ionic liquids (ILs, i.e. salts with melting points below 100 °C) are a huge class of potentially promising solvents. We discuss here published structural or thermodynamic investigations concerning microemulsions in which one or more of the three classical components are ILs.In microemulsions IL can replace respectively the “oil”, the “surfactant” and the “water” phase. Experimental proofs of the existence and stability of microemulsions are given as well as hints at their microstructure. While the four regimes initially defined by Winsor are all accessible, most of the examples of microemulsions containing ionic liquids belong to the class of “rigid” microemulsions. Since additional solutes have characteristic distribution coefficients for each pseudo phase, IL based microemulsions may provide a useful tool for solubilization (reaction medium) and separation, thus allowing the recovery of a large variety of reaction products, but also waste. Further to a discussion of phase diagrams and thermodynamics, we will show some application examples and propose challenges for future studies, in this vast but only emerging domain.  相似文献   

19.
The reactions of the alkaline fading of phenolphthalein (PN) have been studied in water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane microemulsions by monitoring the absorbance changes of PN in the system with the time and the results compared with those found for the same reactions in aqueous solutions. It was found that the values of the equilibrium constants and the forward reaction rate constants in the microemulsions were significantly larger than that in aqueous solutions and decreased with increasing the molar ratio of water to AOT (ω), except for that with low ω. The temperature dependence of the reaction rate constant was analyzed to obtain the values of free energy, enthalpy, and entropy of activation, which suggests the existence of an isokinetic relationship and a common mechanism for the reactions occurring in the microemulsions with different ω. It was also observed that the competition between the reactions of the alkaline fading of PN and the hydrolyzation of AOT in water/AOT/isooctane microemulsions when the reaction time was sufficiently long.  相似文献   

20.
Effect of the structures of microemulsions on chemical reactions   总被引:2,自引:0,他引:2  
Two kinds of chemical reactions were studied in two different microemulsion systems: cetyltrimethylammonium bromide/1-butanol/10 and 25% n-octane/water and sodium dodecyl sulfonate/1-butanol/20% styrene/water. One reaction is a hydrolysis reaction, in which aspirin and 2,4-dinitrochlorobenzene were used as the hydrolysis substrates. The second reaction is the polymerization of styrene, which was initiated by using two initiators, water-soluble K2S2O8 and oil-soluble 2,2′-azobis(isobutyronitrile), and, at the same time, the polymerization of acrylamide, which was initiated by NaHSO3, was also studied. All the hydrolysis reaction experimental results show that the hydrolysis is greatly affected by the structures and the structural transitions of microemulsions. The hydrolysis rates are higher in water-in-oil (W/O) microemulsion media and decrease with the addition of water. The rates increase in bicontinuous (BC) microemulsions and decrease in oil-in-water (O/W) microemulsions. The transition points of the hydrolysis rates occurred at the two microemulsion structural transition points from W/O to BC and from BC to O/W. The polymerization relationships between the conversions of styrene, the molecular weights of polystyrene and the water contents of the microemulsion system were obtained. The effects of microemulsion structures on the sizes of the polystyrene particles and on the molecular weights of the polymers are discussed. Polystyrene particles with diameters of 10–60 nm were observed by microscopy. Our experimental polymerization results show that microemulsions are suitable as media for the production of polymers, the molecular weights and the particle sizes of which can be controlled and predicted by variations in microemulsion structures. Received: 11 July 1999/Accepted: 26 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号