首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polaron decay in n-type InAs quantum dots has been investigated using energy dependent, mid-infrared pump–probe spectroscopy. By studying samples with differing ground state to first excited state energy separations the relaxation time has been measured between 40 and 60 meV. The low-temperature decay time increases with increasing detuning between the pump energy and the optical phonon energy and is maximum (55 ps) at 56 meV. From the experimentally determined decay times we are able to extract a low-temperature optical phonon lifetime of 13 ps for InAs QDs. We find that the polaron decay time decreases by a factor of 2 at room temperature due to the reduction of the optical phonon lifetime.  相似文献   

2.
We show how the resonant absorption of the ground state neutral exciton confined in a single InGaAs self-assembled quantum dot can be directly observed in an optical transmission experiment. A spectrum of the differential transmitted intensity is obtained by sweeping the exciton energy into resonance with laser photons exploiting the voltage induced Stark-shift. We describe the details of this experimental technique and some example results which exploit the 1 μeV spectral resolution. In addition to the fine structure splitting of the neutral exciton and an upper bound on the homogeneous linewidth at 4.2 K, we also determine the transition electric dipole moment.  相似文献   

3.
We use frequency-dependent capacitance–voltage spectroscopy to study the dynamic charging of self-assembled InAs quantum dots. With increasing frequency, the AC charging becomes suppressed, beginning with the low-energy states. By applying an in-plane magnetic field, we generate an additional magnetic confinement that alters the tunneling barrier and hence the charging dynamics. In traveling through the potential barrier, the electrons acquire an additional momentum k0, proportional to the magnetic field B. As the tunneling is enhanced, when k0 matches the maximum of the electronic wave function Ψ (in momentum representation), we are able to map out the shape of Ψ by varying B.  相似文献   

4.
We have investigated the carrier relaxation dynamics in single columns of tenfold stacked vertically aligned InAs quantum dots by micro-photoluminescence measurement. The excitation spectrum in the stacked dots is much different from that in the single dot characterized by the existence of a zero-absorption region and sharp multiple phonon emission lines. We have observed a broad continuum absorption far below the wetting layer band edge in the spectrum of the single columns although we have confirmed the existence of a zero-absorption region in the same sample with reduced number of dot layers to almost single, realized by surface etching. The broad absorption feature suggests the existence of additional carrier relaxation channels through non-resonant tunneling between the dots.  相似文献   

5.
We discuss the preparation and spectroscopic characterisation of a single InAs/InP quantum dot suitable for long-distance quantum key distribution applications around λ=1.55 μm. The dot is prepared using a site-selective growth technique which allows a single dot to be deposited in isolation at a controlled spatial location. Micro-photoluminescence measurements as a function of exciton occupation are used to determine the electronic structure of the dot. Biexciton emission, shell filling and many-body re-normalization effects are observed for the first time in single InAs/InP quantum dots.  相似文献   

6.
Vibrational spectroscopy of InAs and AlAs quantum dot structures   总被引:1,自引:0,他引:1  
In this paper we present an experimental comparative study of InAs/AlAs periodical structures with InAs and AlAs quantum dots (QDs) by means of infrared and Raman spectroscopies. The first observation of optical phonons localized in InAs and AlAs QDs using infrared spectroscopy is demonstrated. Confined optical phonon frequencies of the QDs measured by means of Raman scattering are compared with those deduced from the analysis of infrared spectra performed in the framework of the dielectric function approximation.  相似文献   

7.
A single-electron transistor (SET) is used to detect tunneling of single electrons into individual InGaAs self-assembled quantum dots (QDs). By using an SET with a small island area and growing QDs with a low density we are able to distinguish and measure three QDs. The bias voltage at which resonant tunneling into the dots occurs can be shifted using a surface gate electrode. From the applied voltages at which we observe electrons tunneling, we are able to measure the electron addition energies of three QDs.  相似文献   

8.
We report on polaron decay in InAs/GaAs self-assembled quantum dots. The polarons are probed by pump–probe spectroscopy through their optical intersublevel absorption around 62 meV (20 μm wavelength). A T1 polaron lifetime of the order of tens of picosecond is deduced from the low-temperature pump–probe measurements. We show that a long-lived component can be additionally observed on the pump–probe measurements. The spectral dependence of this long-lived component is, however, not correlated to the polaron absorption. It is thus not a signature of polaron relaxation quenching. The origin of this long-lived component is attributed to the two-phonon absorption of the bulk GaAs substrate.  相似文献   

9.
We present a scheme for remotely addressing single quantum dots (QDs) by means of near-field optical microscopy that simply makes use of the polarization of light. A structure containing self-assembled CdTe QDs is covered with a thin metal film presenting sub-wavelength holes. When the optical tip is positioned some distance away from a hole, surface plasmons in the metal coating are generated which, by turning the polarization plane of the excitation light, transfer the excitation towards a chosen hole and induce emission from the underlying dots. In addition, our procedure gives valuable insight into the diffusion of photo-excited carriers in the QD plane that can put limits to the addressing scheme.  相似文献   

10.
The nature of the confined electronic states in InAs/GaAs self-assembled quantum dots is studied using photocurrent spectroscopy measured as a function of applied electric field. A field asymmetry of the quantum confined Stark effect is observed, consistent with the dots possessing a permanent dipole moment. The sign of this dipole indicates that for zero field the hole wave function lies above that of the electron, in disagreement with the predictions of all recent calculations. Comparison with a theoretical model demonstrates that the experimentally determined alignment of the electron and hole can only be explained if the dots contain a non-zero and non-uniform Ga content.  相似文献   

11.
We show how the atomistic pseudopotential many-body theory of InGaAs/GaAs addresses some important effects, including (i) the fine-structure splittings (originating from interband spin exchange), (ii) the optical spectra of charged quantum dots and (iii) the degree of entanglement in a quantum dot molecule.  相似文献   

12.
The hole confinement in type-II self-organized GaSb/GaAs quantum dots (QDs) was investigated by combining optical excitation and time-resolved capacitance spectroscopy. The experimental results indicate energy-selective charging even for type-II QDs. With increasing excitation energy the apparent hole activation energy decreases, which is attributed to light absorption in sub-ensembles of QDs with decreasing hole localization. The large localization energy of about 450 meV and the possibility of optical-multiplexing makes type-II GaSb/GaAs QDs a potential material system for QD memory concepts.  相似文献   

13.
Polaron relaxation processes in a series of n-type InAs quantum dots (QDS) have been investigated using energy-dependent far-infrared pump–probe spectroscopy. For energies up to 53 meV, polarons decay to 2 longitudinal acoustic phonons; above this energy additional decay channels open resulting in a reduction of the decay time. Inter-state transfer has been observed between closely spaced p-like excited states, with the measured transfer times in good agreement with calculations assuming acoustic phonon assisted transfer. Finally, for QDs containing 2 electrons we observe evidence of a spin-flip process resulting in long (700 ps) relaxation times.  相似文献   

14.
Novel, self-assembled quantum dot (QD) structures suitable for single-dot optical spectroscopy are fabricated by combining III–V molecular beam epitaxy and in situ, atomic layer precise etching. Several growth and etching steps are used to produce lateral InAs/GaAs QD bimolecules and unstrained GaAs/AlGaAs QDs with low surface density . Micro-photoluminescence is used to investigate the ensemble and single-QD properties of GaAs QDs. Single-QD spectra show resolution-limited sharp lines at low excitation and broad “shell-structures” at high excitation intensity.  相似文献   

15.
The hole system in InAs quantum dots was investigated by frequency-dependent capacitance–voltage spectroscopy. Up to eight distinct charging peaks could be observed and the energy difference between the individual peaks could be estimated. All charging peaks decrease with increasing measurement frequency; however, the lower the energy of the hole level the stronger the decrease. A comparison with the results of the electron system in similar quantum dots yields that for all hole levels the effective mass in the barrier is much larger than in the electron system.  相似文献   

16.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

17.
Dynamics of single InGaN quantum dots   总被引:1,自引:0,他引:1  
Decay dynamics for single InGaN quantum dots are presented using time-resolved photoluminescence. The recombination is shown to be characterized by a single exponential decay, in contrast to the non-exponential recombination dynamics seen in the 2D wetting layer. The lifetimes of single dots in the temperature range 4–60 K decrease with increasing temperature. Different dots show similar lifetimes of 2 ns.  相似文献   

18.
Exciton relaxation in self-assembled semiconductor quantum dots   总被引:1,自引:0,他引:1  
The present study focuses on the effect of excited states on the exciton–polaron spectrum for self-assembled InAs/GaAs semiconductor quantum dots. The analytical model takes into account the Coulomb interactions between the electron and the hole as well as, each carrier, the coupling with the longitudinal optical phonon field. Furthermore, the key role played by the exciton continuum in the dot spectrum is also introduced. Such an approach is well fitted to analyze recent experimental findings about single-dot spectroscopy and allows peaks assignment, line width estimation, relaxation time evaluation, etc., necessary steps toward an understanding of the internal dynamics of quantum dots.  相似文献   

19.
A pronounced modulation is observed in the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots (QDs), recorded at low excitation densities. The clearly distinguishable peaks are identified as a multimodal distribution of the ground state transition energy, originating from a discrete, stepwise variation of the structural properties of the QDs, which is associated with an increase of the QD height in monolayer (ML) steps. The observation of a ML splitting implies a flat QD shape with well-defined upper and lower interfaces as well as negligible indium segregation. The electronic properties of the InAs/GaAs QDs were investigated by PL and PL-excitation spectroscopy and are discussed based on realistic calculations for flat InAs/GaAs QDs with a truncated pyramidal shape based on an extended 8-band k·p model. The calculations predict a red shift of the ground state transition with each additional ML, which saturates for heights above 9 ML, is in good agreement with experiment.  相似文献   

20.
We report electronic characterization of stacked InAs self-assembled quantum dots (SAQDs) embedded in GaAs, using ultra-short pulses. Electrical pulse trains with the width ranging from 50 to 500 ps were applied on the waveguide-type top electrode and the average substrate current was monitored. The current showed staircases and oscillatory features as a function of the pulse width. The staircase could represent single electron injection into SAQDs and the observed oscillatory features could be related with temporal change of electronic occupation in quantum states of SAQDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号