首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Firstly, an approach is proposed for eliminating the tilt phase aberration introduced by the tilt reference wave. It is based on the argument distribution of the hologram spectrum to locate exactly the position of the carrier frequency of the virtual image. This tilt aberration will be corrected by shifting the filtered hologram spectrum to the coordinate origin of the frequency domain, without knowledge of the focal length of the imaging lens or distances in the setup. Then the subsequent quadratic phase aberration compensation is performed only by adjusting a single parameter. The method is demonstrated by the phase contrast imaging of the cervical carcinoma cells.  相似文献   

2.
Combining the experimental research with the simulation calculation, the error evaluation for Zernike polynomials fitting (ZPF) based phase compensation of digital holographic microscopy (DHM) is performed. The obtained results show that the reconstructed phase with high precision can be obtained by ZPF phase compensation algorithm. Moreover, the phase error for ZPF based phase compensation algorithm increases with both the variation of object height and object transverse area, the larger variation of object height, the larger of phase error, and the larger of object transverse area, the faster increase of RMS phase error. To decrease the error of ZPF phase compensation algorithm, it is required to ensure one of the variations of object height and object transverse area to be a small value. Importantly, the proposed method supplies a useful tool for the error evaluation of phase compensation algorithm.  相似文献   

3.
The phase reconstruction in a digital in-line holographic microscopy is compared using two numerical reconstruction methods. The first method uses one Fourier transform and second one uses three Fourier transforms. It is shown that the latter method gives improved object phase reconstruction as compared to the former.  相似文献   

4.
A complex-amplitude-based phase unwrapping approach for digital holographic microscopy is proposed in this paper. A quality map is derived directly from the reconstructed complex amplitude distribution of object wave to evaluate noise influence and phase reliability in the wrapped phase image. Quality-guided phase unwrapping algorithm is then implemented with the quality map to retrieve continuous phase profile. Unwrapping errors caused by unreliable phase data are successfully suppressed. The effectiveness of this method is demonstrated with simulation and experimental results.  相似文献   

5.
Reflection configured digital holographic microscopy (DHM) can perform accurate optical topography measurements of reflecting objects, such as MEMs, MOEMs, and semiconductor wafer. It can provide non-destructive quantitative measurements of surface roughness and geometric pattern characterization with nanometric axial resolution in real-time. However, the measurement results may be affected by an additional phase curvature introduced by the microscope objective (MO) used in DHM. It needs to be removed either by numerical compensation or by physical compensation.We present a method of physical spherical phase compensation for reflection DHM in the Michelson configuration. In the object arm, collimated light is used for illumination. Due to the use of the MO, the object wavefront may have a spherical phase curvature. In the reference arm, a lens and mirror combination is used to generate a spherical recording reference wave in order to physically compensate the spherical phase curvature of the object wavefront. By controlling the position of the mirror and the sample stage, the compensation process has been demonstrated. The relative positions of the test specimen and the reference mirror must be fixed for the physical spherical phase to be totally compensated. A numerical plane reference wave is preferred for the numerical reconstruction of the phase introduced by the test specimen. Experimental results on wafer pattern recognition are also given.  相似文献   

6.
《Current Applied Physics》2018,18(11):1261-1267
In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation 180° to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of 1024 × 768 pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in real-time. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.  相似文献   

7.
This work proposes a cost-effective, simple, micro-phase-step (MPS) method for suppressing the zero-order diffraction and conjugate-image interferences that are caused during digital holographic microscopic image reconstruction. The proposed MPS method replaces the conventional phase modulation approach; it uses a rotatable cover glass that enables smooth modification of the incidence angle and the optical path of the reference beam. This setup allows the phase step to be accurately estimated by shifting the reference wave phase more freely close to π/2, at which the background noise can be suppressed more effectively. In the proposed MPS method, the optimal conditions for suppressing conjugate-image interference are identified using a relatively moderate intensity distribution and suppression of noise in the numerically reconstructed object wave-field. In addition, the proposed method mitigates the effect of disturbances that are caused by environmental factors, such as minor vibrations and small changes in temperature and humidity. Importantly, only two holograms are required to satisfy the objective of image reconstruction. The results in this work reveal that even with intentional interference caused by minor vibrations, conjugate-image interference can still be suppressed by determining the phase deviation between the two original holograms.  相似文献   

8.
Peizhen Qiu  Hongzhen Jin  Yong Li  Yile Shi 《Optik》2010,121(14):1251-1256
In this paper, a new simplified technique for effectively eliminating the zero order and the conjugate virtual image in digital holographic microcopy, which makes use of two-step phase-shifting method of just recording two holograms and an intensity image of object wave, is proposed. Meanwhile, combined with the principle of making full use of spatial bandwidth of the CCD sensor by in-line lens-less Fourier holographic recording geometry, the theory and experimental methods to increase the resolution of the reconstructed image in digital holography by using phase-shifting technique are detailedly analyzed. At end, the validity and availability of this technique has been demonstrated through the off-axis and in-line Fourier transform recording geometry. The study provides some theoretical and experimental guidance for the design and operation of a digital holographic microscopy system.  相似文献   

9.
This paper investigates the application of Fresnel based numerical algorithms for the reconstruction of Gabor in-line holograms. We focus on the two most widely used Fresnel approximation algorithms, the direct method and the angular spectrum method. Both algorithms involve calculating a Fresnel integral, but they accomplish it in fundamentally different ways. The algorithms perform differently for different physical parameters such as distance, CCD pixel size, and so on. We investigate the constraints for the algorithms when applied to in-line Gabor digital holographic microscopy. We show why the algorithms fail in some instances and how to alter them in order to obtain useful images of the microscopic specimen. We verify the altered algorithms using an optically captured digital hologram.  相似文献   

10.
In this paper, digital holographic (DH) microscopy demonstrates its ability to perform a full characterization of nanofibers. The high resolution and magnification of the presented method to study the nanofibers are tested using standard MIL-STD-150A 1951 USAF resolution test target. In this investigation, aggregated natural cellulose nanowhisker fibers are positioned in the front of the microscopic objective using a 3D translation stage in the object arm of DH setup. The recorded off-axis holograms are refocused using the angular spectrum method. The reconstructed complex field is used to calculate optical phase and intensity distributions of the object at different reconstruction depths. A simple algorithm is used to define the focused image with suitable accuracy. The dimensions and orientation of the fibers can be evaluated from the optical field at different depths. Then, the shape and textures along the aggregated natural cellulose nanowhisker fiber can be presented in a 3D space.  相似文献   

11.
The combined use of digital holographic microscopy and computer tomography, here named digital holographic micro-tomography, is used to examine the interior of transparent channels. The proposed method is used to identify internal obstacles inside of transparent troughs having slightly different refractive index. The method is based in the acquisition of a set of digital holograms of the specimen whereas it is axially rotated from 0° to 180°. The phase differences retrieved from the obtained holograms are the inputs to a computerised axial tomography procedure. The technique has been numerically modelled in order to find the optimal tomographic conditions and also to realise the minimum difference of refractive index the method could detect. The obtained results show the feasibility of the proposed method for the non-destructive evaluation of transparent micro-objects.  相似文献   

12.
We present an experimental setup useful for complex amplitude evaluation and phase image quantification of three-dimensional (3-D) samples in digital holographic microscopy (DHM). It is based on a common-path interferometric configuration performed by dividing the input plane in two contiguous regions and by placing a translation grating near to the Fourier plane. Then, complex amplitude distribution of the sample under test is recovered with phase-shifting standard method obtained by moving the grating using a linear motion stage. Some experimental results of an USAF resolution test are presented for different numerical aperture (NA) microscope lenses. In a second part, the proposed setup is tested under superresolution purposes. Based on the object’s spectrum shift produced by off-axis illumination, we use time multiplexing to generate a synthetic aperture enlargement that improves the final image resolution. Experimental results for the case of a biosample (human red blood cells) and a commercial low NA microscope lens validates the suggested superresolution approach.  相似文献   

13.
刘力  蔡野锋  吴鸣  杨军 《应用声学》2015,34(1):7-16
针对目前室外及超大型室内空间的扩声应用中声场分布不均匀的问题,本文提出了一种基于最小二乘法声场重建方法的扩声技术。该技术通过对目标声场的逼近来计算线性扬声器阵列各通道的输入参数,实现扩声区域内声压级的均匀分布,同时约束非扩声区域的声能量以获得较好指向性。本文通过仿真研究算法各参数的改变对控制结果的影响,探讨不同扩声区域和目标所对应参数的选取方法。仿真和实验比较了该算法以及未经控制的声场、相移法波束控制的效果,证明该方法可以获得更好的声场均匀度。  相似文献   

14.
最小二乘法线性拟合中参数的确定问题   总被引:7,自引:0,他引:7  
邵建新 《大学物理》2003,22(1):23-24
指出一些文献在讲术最小二乘法线性拟合中参数确定时存在的问题。  相似文献   

15.
Partial coherent light sources open up prospects for phase noise reduction in digital holographically reconstructed phase distributions by suppressing multiple reflections in the experimental setup. Thus, light emitting diodes (LEDs) are investigated for application in digital holographic microscopy. First, the spectral properties and the resulting coherence length of an LED are characterised. In addition, an analysis of dispersion effects and their influence on the hologram formation is carried out. The coherence length of LEDs in the range of a few micrometers restricts the maximum interference fringe number in off-axis holography for spatial phase shifting. Thus, the application of temporal phase-shifting-based digital holographic reconstruction techniques is compared to spatial phase-shifting-based methods. It is demonstrated that LEDs are applicable for digital holographic microscopy in connection with both spatial and temporal phase-shifting-based techniques for reduction of noise in comparison to a laser-light-based experimental setup.  相似文献   

16.
In this paper, complex phasor (CP) method is employed in digital holographic interferometry. Unlike commonly used digital phase subtraction (DPS), the proposed technique processes a CP instead of phase. It is shown that the results obtained by directly filtering the phase produce large errors. It is demonstrated that the phase is not a signal but rather a property of a signal. In addition, the results obtained by the CP method are also compared with those obtained by conventional sine/cosine transformation method.  相似文献   

17.
数字显微全息技术由于具有三维、非接触和实时测量微小空间内流场的能力, 已引起了国内外学者的广泛关注. 利用数字显微全息方法测量微通道流场时, 记录距离、颗粒尺寸、颗粒浓度、入射光波长、CCD分辨率等参数会对颗粒重建结果产生重要影响. 为了评估颗粒浓度和样本空间深度对重建结果的影响, 本文开展了数值模拟研究. 采用基于洛伦兹-米散射理论的程序产生不同浓度的颗粒全息图, 用小波变换重建算法对其进行重建. 结果表明: 在样本空间深度为24 μm 时, 颗粒浓度ns在3.44×105 mm-3–13.77×105 mm-3 范围内时, 颗粒重建率Ep随着颗粒浓度ns 的增大而迅速减小, 在13.77×105 mm-3–55.08×105 mm-3范围内时, 颗粒重建率Ep 随颗粒浓度ns增大而缓慢减少. 在颗粒浓度ns (13.77×105 mm-3) 保持不变时, 颗粒重建率Ep与样本空间深度满足单调递减的线性关系. 当阴影密度不变时, 重建率的变化呈现一定的规律性:当深度L较小时, 样本空间深度对颗粒重建的影响要比颗粒浓度的影响大; 当深度L较大时, 颗粒浓度对颗粒重建的影响较大. 关键词: 数字显微全息 颗粒浓度 粒径误差 位置误差  相似文献   

18.
王华英  于梦杰  刘飞飞  江亚男  宋修法  高亚飞 《物理学报》2013,62(23):234207-234207
为了提高数字全息图的重建速度和精度,本文提出了一种基于同态信号处理的数字全息广义线性重建算法. 首先利用预放大数字全息显微系统并结合同态信号处理原理进行了理论分析,得到了广义线性重建算法的实现条件及重建步骤,并对该算法的优点进行了分析;然后利用计算机模拟和实验相结合的方法对理论分析进行了验证. 结果表明:数字全息广义线性重建算法不仅可以有效的消除全息图频谱中零级项的干扰,实现高精度再现,而且由于采用一个完整象限的固定区域滤波,避免了常规线性算法的手动滤波操作,极大地提高了重建速度,同时最大限度地保留了原始像中的高频成分,实现全息图的高分辨重建. 关键词: 数字全息显微术 同态信号处理 傅里叶变换 分辨率  相似文献   

19.
The tendency of particles to aggregate depends on particle-particle and particle-fluid interactions. These interactions can be characterized but it requires accurate 3D measurements of particle distributions. We introduce the application of an off-axis digital holographic microscopy for measuring distributions of dense micrometer (2 μm) particles in a liquid solution. We demonstrate that digital holographic microscopy is capable of recording the instantaneous 3D position of particles in a flow volume. A new reconstruction method that aids identification of particle images was used in this work. About 62% of the expected number of particles within the interrogated flow volume was detected. Based on the 3D position of individual particles, the tendency of particle to aggregate is investigated. Results show that relatively few particles (around 5–10 of a cohort of 1500) were aggregates. This number did not change significantly with time.  相似文献   

20.
遗传算法与最小二乘法在实验数据处理中的对比研究   总被引:1,自引:0,他引:1  
张风雷 《大学物理》2007,26(6):32-34
采用遗传算法拟合甘油的黏度随温度的变化公式,并将得到的经验公式与采用传统的最小二乘法得到的公式比较.发现在处理某些非线性拟合问题时,采用最小二乘法并非最好,遗传算法得到的结论更优,方法也更简单.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号