首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined, using a set of physicochemical methods, including X-ray powder diffraction (XRD), differential thermal analysis, and microstructure studies, that the CdAs2–Cd3As2–MnAs ternary system is bounded by three eutectic-type quasi-binary sections: Cd3As2–MnAs, CdAs2–MnAs, and Cd3As2–CdAs2. For Cd3As2–MnAs and CdAs2–MnAs sections, the eutectic coordinates are, respectively, 75 mol % Cd3As2 + 25 mol % MnAs, T m.eut = 604°C; and 92 mol % CdAs2 + 8 mol % MnAs, T m.eut = 608°C. These are rod eutectics. Manganese solubilities in Cd3As2 and CdAs2 phases are insignificant and, according to XRD and SEM, they do not exceed 1 at %. The binary eutectics of the quasi-binary sections form ternary eutectic Cd3As2 + CdAs2 + MnAs, whose average composition as probed by SEM is 34.5 at % Cd, 63 at % Cd and 2.5 at % As and T m.eut = 600°C. Cadmium and manganese arsenide alloys are ferromagnets with the Curie point at ~320 K. The magnetic and electric properties are due to ferromagnetic MnAs microinclusions.  相似文献   

2.
The ZnGeAs2–MnAs system is a eutectic-type system as determined by X-ray powder diffraction, DTA, and microstructure observation, with the eutectic coordinates: 61 mol % ZnGeAs2 mol %, 39 mol % MnAs, and Tm = 816°C. The eutectic is a lamellar eutectic as shown by microstructure examination. A characteristic feature of the system is a small mutual solubility of the components. Precision analysis of diffraction patterns enabled us to refine unit cell parameters for cubic and tetragonal ZnGeAs2 phases. MnAs in alloys is shown to consist of a hexagonal phase and a orthorhombic phase. ZnGeAs2 and MnAs alloys are ferromagnets (TC ~ 320 K). Their magnetization increases in response to increasing MnAs content.  相似文献   

3.
Phase equilibria in the MgS–In2S3 system were studied. This system is of the dystectic type with a limited region of a solid solution based on β-In2S3. In the MgS–In2S3 system, a compound of the composition MgIn2S4 forms, which forms congruently at 1180 K and crystallizes in the cubic system (space group Fd3m) with the unit cell parameter a = 1.0689 nm. Eutectics have the compositions 47 and 62 mol % In2S3 and the melting points 1150 and 1120 K, respectively. The MgS solubility in β-In2S3 at 1070 K reaches 9 mol % MgS.  相似文献   

4.
Phase equilibria in the Cu–Cu2Se–As were investigated by differential thermal analysis and X-ray powder diffraction analysis. Informative plots describing this system were constructed, viz., the polythermal sections Cu0.667Se0.333–As, Cu0.667Se0.333–Cu0.735As0.265, and Cu0.8Se0.2–As, the isothermal section of the phase diagram at 300 K, and the projection of the liquidus surface. The obtained results differ from the published data in length of fields of primary crystallization of phases and in coordinates of a number of invariant equilibrium points.  相似文献   

5.
In the BaS–Ga2S3 system, the following compounds form: congruently melting compound BaGa4S7 (rhombic system, space group Pmn21, a = 1.477 nm, b = 0.624 nm, c = 0.593 nm, and Tmelt = 1490 K) and incongruently melting compounds BaGa2S4 (cubic system, space group Pa3, a = 1.2661 nm, and Tmelt = 1370 K), Ba2Ga2S5 (monoclinic system, space group C2/c, a = 1.529, b = 1.479, c = 0.858 nm, ß = 106.04°, and Tmelt = 1150 K), Ba3Ga2S6 (monoclinic system, space group C2/c, a = 0.909 nm, b = 1.448 nm, c = 0.903 nm, ß = 91.81°, and Tmelt = 1190 K), Ba4Ga2S7 (monoclinic system, space group P21/m, a = 1.177 nm, b = 0.716 nm, c = 0.903 nm, ß = 108.32°, and Tmelt = 1230 K), and Ba5Ga2S8 (rhombic system, space group Cmca, a = 2.249 nm, b = 1.215 nm, c = 1.189 nm, and Tmelt = 1480 K). The compositions of eutectics are 38 and 72 mol % Ga2S3, and their melting points are 1120 and 1160 K, respectively. The BaS solubility in γ-Ga2S3 at 1070 K reaches 3 mol %.  相似文献   

6.
The system LaPO4–SiO2–NaF–Nb2O5–Fe2O3 is characterized by immiscibility fields in the liquid state region. Addition of iron expands fields of immiscibility of melts and decreases the temperature of their coexistence. A fraction of 87–90% of niobium is extracted into iron silicate melt, and 92–98% of lanthanum is extracted into phosphate salt melt.  相似文献   

7.
The PbBi2S4–PbSnS2 system was studied by physicochemical analysis methods, and its state diagram was constructed. The system is partially quasi-binary; regions of solid solutions based on PbSnS2 are determined. At a ratio between the initial components of 1: 1, congruently melting compound Pb2SnBi2S6 forms. The unit cells parameters of Pb2SnBi2S6 crystallizing in the orthorhombic system are: a = 15.60 Å, b = 7.80 Å, c = 4.26 Å; space group Pbmm.  相似文献   

8.
Phase equilibria in the isothermal (970 K) and polythermal LaCuS2–EuS, Cu2S–EuLaCuS3, LaCuS2–EuLa2S4, and EuLaCuS3–EuLa2S4 sections of the Cu2S–La2S3–EuS system have been studied. EuLaCuS3 (annealing at 1170 K) is of orthorhombic system, space group Pnma, a = 8.1366(1) Å, b = 4.0586(1) Å, c = 15.9822(2) Å, is isostructural to Ba2MnS3, and incongruently melts by the reaction EuLaCuS3cryst (0.50 EuS; 0.50 LaCuS2) ? 0.22 EuS SS (0.89 EuS; 0.11 LaCuS2) + 0.78 liq (0.39 EuS; 0.61 LaCuS2); ΔН = 52 J/g. The Cu2S–La2S3–EuS system has been found to contain five major subordinate triangles. At 970 K, tie-lines lie between EuLaCuS3 and the Cu2S, EuS, LaCuS2, and EuLa2S4 phases and between the LaCuS2 phase and the γ-La2S3–EuLa2S4 solid solution. Eutectics are formed between LaCuS2 and EuLaCuS3 at 26.0 mol % of EuS and T = 1373 K and between EuLaCuS3 and EuLa2S4 at 29.0 mol % of EuLa2S4 and T = 1533 K.  相似文献   

9.
The phase diagrams of the ternary systems NaCl–NaBO2–KCl, NaCl–KCl–Na2CO3, and KCl–NaBO2–Na2CO3 and the quaternary system NaCl–NaBO2–Na2CO3–KCl were studied by the calculation–experimental method and differential thermal analysis. Analytical models of phase equilibria were obtained, and the coordinates of ternary eutectics and a quaternary eutectic. It was shown that low-melting eutectic melts can be used as media for synthesizing oxide tungsten bronzes.  相似文献   

10.
Phase equilibria in the Cu2S–Cu3AsS4–S system were studied by differential thermal analysis and X-ray powder diffraction. Important plots characterizing this system were constructed, namely, the T–x diagrams of the lateral quasi-binary systems Cu2S–Cu3AsS4 and Cu3AsS4–S, some internal sections, the isothermal section of the phase diagram at 300 K, and the projection of the liquidus surface. The fields of primary crystallization of phases and the types and coordinates of in- and monovariant equilibria were found. A wide region of separation of liquid phases was detected in the system.  相似文献   

11.
It was determined that the system LaPO4–SiO2–NaF–Nb2O5 within the temperature range 850–1200°C has regions of immiscibility of liquid phases (silicate and phosphate–salt melts). The coexisting melts have contrast chemical and phase compositions and structural-textural features, because of which the methods for extracting rare-earth elements and niobium from these melts differ. The silicate melts form glass, whereas the phosphate–salt melts have high crystallization ability. The mutual solubility of the liquid phases does not exceed 5%. The components of the system are contrastively distributed between the silicate and phosphate–salt melts. A fraction of 95–97% of niobium is extracted into the silicate melt, and 93–95% of La and P is extracted into the phosphate–salt melt.  相似文献   

12.
A series of oxides La2 - x Ca x Zr2O7–α (x = 0.00, 0.05, 0.10, 0.15, 0.20) is synthesized. It is found that in samples with the calcium content x = 0.15, 0.20, the second phase Ca0.9La0.2Zr0.9O3 is present in the fraction increasing with the increase in x. The solubility limit of calcium to form solid solutions based on La2Zr2O7 corresponds to x = 0.1. By high-temperature gravimetry, the proton concentration in La1.95Са0.05Zr2O7–α is obtained as a function of temperature in the interval of 300–950°С in Н2О–О2 atmosphere. According to temperature programmed desorption studies, in the temperature range of 400–900°С at least two types of OH defects with different binding energies are present in the oxide lattice. The temperature dependences of conductivity are obtained for La1.95Са0.05Zr2O7–α in dry and humid air atmosphere in the temperature range of 350–800°С by the method of impedance spectroscopy. The electrolyte conductivity in humid air is shown to substantially exceed the corresponding values in dry air, which can be associated with manifestation of protonic conductivity in humid atmosphere. The dependences of oxide conductivity on the oxygen content in the gas phase are determined. The conductivity is divided into its ionic and hole components.  相似文献   

13.
The sequence of phases appearance during the formation of Bi1–xNdxFeO3 solid solutions in powder oxides mixtures of bismuth, neodymium, and iron has been determined. It has been shown that the closeness of the reaction mixture composition to that of the individual compound (BiFeO3 or NdFeO3) is essential for the realization of the series of phase transformations yielding solid solutions of multiferroics Bi1–xNdxFeO3 as the final product, due to the prevalence of various interphase contacts in the starting reaction zone.  相似文献   

14.
The present paper reports on the effect of MoO3 on the glass transition, thermal stability and crystallization kinetics for (40PbO–20Sb2O3–40As2O3)100−x –(MoO3) x (x = 0, 0.25, 0.5, 0.75 and 1 mol%) glasses. Differential scanning calorimetry (DSC) results under non-isothermal conditions for the studied glasses were reported and discussed. The values of the glass transition temperature (T g) and the peak temperature of crystallization (T p) are found to be dependent on heating rate and MoO3 content. From the compositional dependence and the heating rate dependence of T g and T p, the values of the activation energy for glass transition (E g) and the activation energy for crystallization (E c) were evaluated and discussed. Thermal stability for (40PbO–20Sb2O3–40As2O3)100−x –(MoO3) x glasses has been evaluated using various thermal stability criteria such as ΔT, H r , H g and S. Moreover, in the present work, the K r(T) criterion has been considered for the evaluation of glass stability from DSC data. The stability criteria increases with increasing MoO3 content up to x = 0.5 mol%, and decreases beyond this limit.  相似文献   

15.
In this work, the structure and thermal properties of aluminosilicate fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system with (4.0 mol%) and without addition of ZnO were examined by GIXRD, FTIR, MAS-NMR and thermal methods (DTA, DIL). It has been found that the all experimental glazes are amorphous material (transparent glazes). On the base of spectroscopic investigations, it was found that zinc ions exist in the network glazes in the octahedral coordination—Zn2+ ions play a network modifier role in structure of glazes. An analysis of the data obtained from thermal tests showed that addition of ZnO into chemical composition results in decrease in glass transition temperature value (T g) for all glazes (DTA, DIL). The coefficient of thermal expansion (α) is decreased as the whole measurement range for one series of fritted glazes.  相似文献   

16.
In this work it has been established which compounds finally are formed in air in the two-component CuO-V2O5 and CuO-α-Sb2O4 systems. Unknown thermal properties of CuV2O6, Cu2V2O7 and Cu11V6O26 have been established. Reactivity of the oxides and phase relations in the ternary V2O5-CuO-α-Sb2O4 system in air have been studied by using XRD and DTA methods. The results have showed the reaction of V2O5, CuO with α-Sb2O4 does not produce any compound where all the three oxides would be involved. It has been established that the α-Sb2O4 reacts and forms binary phases independently with CuO or V2O5. On the base of these results the investigated system was divided into subsidiary subsystem in which CuSb2O6 remains at equilibrium in the solid state with other phases formed in corresponding binary systems.  相似文献   

17.
Thermal behavior of xGa2O3–(50 − x)PbO–50P2O5 (x = 0, 10, 20, and 30 mol.% Ga2O3) and xGa2O3–(70 − x)PbO–30P2O5 (x = 0, 10, 20, 30, and 40 mol.% Ga2O3) glassy materials were studied by thermo-mechanical analysis (TMA) and differential thermal analysis (DTA). Replacement of PbO for Ga2O3 is accompanied by increasing glass-transition temperature (263 ≤ T g/°C ≤ 535), deformation temperature (363 ≤ T d/°C ≤ 672), crystallization temperature (396 ≤ T c/°C ≤ 640) and decreasing of coefficient of thermal expansion (5.1 ≤ CTE/ppm K−1 ≤ 16.7). Values of Hruby parameter were determined (0.1 ≤ K H ≤ 1.3). The thermal stability of prepared glasses increases with increasing of concentration of Ga2O3.  相似文献   

18.
The dependence of solid phase composition on the main parameters of the interaction in the CoSO4-K4P2O7-H2O system was studied. The synthesis conditions were determined and a crystalline cobalt(II) diphosphat of the composition Co2P2O7 · 6H2O was synthesized. Its thermal properties were studied. The composition and the intervals, wherein the thermally stable products of partial and complete dehydration of Co2P2O7 · 6H2O are formed, were specified. The final heat treatment product, anhydrous α-Co2P2O7, was identified and a sequence of the solid phase thermal transformations accompanying its formation was established.  相似文献   

19.
The results of a study of the optimum oxidation conditions in the system UV?nano-Т?О2–K2Cr2O7 in a specially designed photoreactor are presented. The basic parameters of the photocatalytic oxidation of glucose and acetic acid were studied and optimized. The oxidation of organic compounds under the optimized conditions was studied. Nano-TiO2 was shown to be a promising photocatalyst in the design of new oxidation systems for analytical purposes.  相似文献   

20.
Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号