首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous TiO2 has been obtained by template synthesis. The introduction of a surfactant in the hydrolysis of tetrabutoxytitanium in aqueous ethanol allows the structure of the resulting material to be controlled. The amorphous TiO2 resulting from hydrolysis turns into anatase on being calcined at 300°C. As determined by X-ray diffraction, the anatase crystallite size is 70 nm in the presence of the highest surfactant concentration examined and 210 nm in the absence of a surfactant. Amorphous materials have been characterized by electron microscopy and differential thermal analysis. The ultimate benzene adsorption value has been determined for calcined mesoporous TiO2.  相似文献   

2.
Monolithic macroporous titanium dioxide (TiO2) derived from ionic precursors has been successfully prepared via the sol–gel route accompanied by phase separation in the presence of formamide (FA) and poly(vinylpyrrolidone) (PVP). The addition of FA promotes the gelation, whereas PVP enhances the polymerization-induced phase separation. Appropriate choice of the starting compositions allows the production of cocontinuous macroporous TiO2 monoliths in large dimensions, and controls the size of macropores. The resultant dried gel is amorphous, whereas anatase and rutile phases are precipitated at 500 and 900 °C respectively, without spoiling the macroporous morphology. Nitrogen adsorption–desorption measurements revealed that the dried gels exhibits mesostructure with a median pore size of about 3 nm and BET surface area of 228 m2/g, whereas 15 nm and 73 m2/g for the gels calcined at 600 °C.  相似文献   

3.
Mesoporous titanium dioxide nanosized powder with high specific surface area and anatase wall was synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting materials were characterized by XRD, nitrogen adsorption, FESEM, TEM, and FT-IR spectroscopy. The as-synthesized mesoporous TiO2 nanoparticles have mean diameter of 17.6 nm with mean pore size of 2.1 nm. The specific surface area of the as-synthesized mesoporous nanosized TiO2 exceeded 430 m2/g and that of the samples after calcination at 600 degrees C still have 221.9 m2/g. The mesoporous TiO2 nanoparticles show significant activities on the oxidation of Rhodamine B (RB). The large surface area, small crystalline size, and well-crystallized anatase mesostructure can explain the high photocatalytic activity of mesoporous TiO2 nanoparticles calcined at 400 degrees C.  相似文献   

4.
This paper reports the study of the preparation and structural characterization of nanocrystalline titanium dioxide (TiO2) fibers, which were prepared using sol–gel method with titanium tetrachloride (TiCl4) as the titanium source and acetylacetone as chelating agent to synthesize the poly-acetylacetonatotitanium (PAT) spinning solution, followed by centrifugal spinning and steam atmosphere heat-treatment. The molecule structure of the PAT was analyzed. Using the fourier transform infrared and 1H nuclear magnetic resonance spectrum. The microstructure of the TiO2 fibers was observed by using scanning electron microscope, which showed that the fibers’ diameters are in the range of 5–15 μm. The effects of the SiO2 doping were investigated by using high-resolution transmission electron microscope and X-ray diffractometer, and the conclusion is that SiO2 doping can efficiently inhibit the grain growth of TiO2 fibers and defer the phase transformation of anatase-to-rutile. In fact, the grain size is 33.2 nm for the un-doped TiO2 fibers heat-treated at 700 °C, while the grain size is only 7.6 nm for the TiO2 fibers doped with 15 wt% SiO2, which shows the possibility to obtain nano-crystalline anatase TiO2 fibers at higher heat-treatment temperature.  相似文献   

5.
Porous anatase is attractive because of its notable photo-electronic properties. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60°C and the solvent was extracted (aerogel). Mesoporous TiO2 consisting of anatase nano-particles, about 5 nm in diameter, have been obtained. Thermal evolution of the microstructure of the aerogel was evaluated by TGA-DTA, N2 adsorption, TEM and XRD, and discussed in comparison with that of the corresponding xerogel. The diffraction peaks of anatase were found for the as-extracted gel while the xerogel dried at 90°C was amorphous. After calcination at 600°C, the average pore size of the aerogel, about 20 nm in diameter, was 4 times larger than that of the xerogel, and the pore volume, about 0.35 cm3 g−1, and the specific surface area, about 60 m2 g−1, were 2 times larger than those of the xerogel. XRD peaks of rutile have been found after calcination at 600°C. The particle sizes of anatase and rutile are about 13 and 25 nm in diameter, respectively. The surface morphology of TiO2 nano-particles has been discussed in terms of their surface fractal dimensions estimated from the N2 gas adsorption isotherms.  相似文献   

6.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

7.
Highly homogeneous transparent titania gels have been successfully prepared from titanium alkoxide by a sol–gel method utilizing chelating agent, ethyl acetylacetate (EtAcAc), in the presence of strong acid anions. Only catalytic amount of a strong acid anion suppress the rapid hydrolysis of titanium alkoxide by blocking the nucleophilic attack of HO and H2O, and the resultant moderate sol–gel reactions thus afford homogeneous gelation, leading to transparent monolithic titania gels. Gelation time can be widely controlled by changing amounts of water, chelating agent and salt. The ability of salts to suppress the too abrupt sol–gel reactions is strongly dependent on the electronegativity of anions and valence of cations. With employing NH4NO3 as a suppressing electrolyte, the obtained titania gels can be converted to pure TiO2 by simple washing and heat-treatment, and transformations to anatase and rutile structures were found to start at 400 and 600 °C, respectively.  相似文献   

8.
Thermal hydrolysis of titanium hydrochloride in the presence of ammonium sulfate added in a Ti: SO 4 2? = 20: 1 ratio was used to obtain samples of mesoporous titanium dioxide with anatase structure, stable in a wide temperature range. The phase composition, porous structure, and morphology of the synthesized titanium dioxide powders were examined by X-ray phase analysis, IR spectroscopy, scanning electron microscopy, and low-temperature adsorption of nitrogen. The role played by sulfate ions in how the microstructure of titanium dioxide is formed was determined. The effect of the hydrolysis temperature on the structure of titanium dioxide being obtained and on its photocatalytic activity in the reaction of decomposition of Methyl Orange dye was examined.  相似文献   

9.
A procedure for the preparation of microporous titania membranes by the polymeric sol-gel technique is reported. The influence of acid/titanium ratio, water/titanium ratio, method of mixing components and refluxing time on particle size and sol stability was investigated. The thermal evolution, structural characteristics and liquid permeation properties of calcined materials were studied. Highly reproducible amorphous microporous titania layers with pore sizes ≤0.8 nm were obtained on both mesoporous γ-alumina and titania/zirconia coated substrates. The upper limit of thermal stability of the amorphous phase is ~300°C. Higher calcination temperatures led to phase transformation into anatase, which was accompanied by a collapse of the microstructure. The material was found to be chemically stable in a wide pH interval.  相似文献   

10.
An improvement in the photodegradation performance for dyes due to interaction between carbon and titania in a self‐assembled mesoporous C? TiO2 composite catalyst, even for the difficult degradation of azo dyes, is reported herein. The dye removal process involves adsorption of the dye from water by the mesoporous carbon–titania, followed by photodegradation on the separated dye‐loaded solid. Such adsorption–catalysis cycles can be carried out more than 80 times without discernible loss of photocatalytic activity or the anatase content of the composite. In each run, about 120 mg dye per g catalyst can be degraded. The mesoporous carbon–titania catalyst also exhibits a high capacity for converting methyl orange in aqueous solution under visible light. Characterization by XRD, TEM, and N2 sorption techniques has revealed that the self‐assembled composite catalyst has an ordered mesostructure, uniform mesopores (4.3 nm), a large pore volume (0.30 cm3 g?1), and a high surface area (348 m2 g?1). The pore walls are composed of amorphous carbon and anatase nanoparticles of size 4.2 nm, which are well dispersed and confined. X‐ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPS), and UV/Vis absorption results indicate doping of carbon into the anatase lattice and a change in the bandgap of the semiconductor. The synergistic improvement in the composite catalyst can be attributed to the following features: (1) carbon doping of the anatase lattice modifies its bandgap and enhances its activity under visible light; (2) confinement within carbon pore walls prevents aggregation of tiny anatase nanoparticles, improving their activity and stability; (3) the mesopores provide a confined space for photocatalysis; and (4) the strong adsorption ability of porous carbon for organic substances ensures that large quantities can be processed and inhibits further diffusion of the adsorbed organic substances, thereby enhancing the mineralization on anatase.  相似文献   

11.
In this work, the structural and optical properties of titanium dioxide (TiO2) nanopowders are studied. The TiO2 nanoparticles were synthesized by complexing sol–gel process and effect of complexing agents on transition of the anatase phase to rutile phase during the heat treatment have been investigated. In addition, we have studied the grain size of TiO2 powders and their dependence on the type of complexing agent. The analysis of the XRD patterns, FT-IR and UV–Vis spectroscopy, BET surface area and TEM images show that the synthesis of nanoparticles with acetyl acetone (AcAc) as complexing agent yielded the smallest size of nanoparticles about 22–35 nm. Our results indicate that with increasing the calcinating temperature, the size of the nanoparticles is increased and the energy gap reduced, too. Also, the optical band gap was obtained in the range of 3.4–4.1 and 3.06–3.74 eV for anatase and rutile phases, respectively.  相似文献   

12.
The optimum processing parameters required to synthesize, by hydrolysis of titanium isopropoxide (TIP), highly stable hydrosols composed of nanoparticles of the smallest possible size, are deduced both from data available in literature and from our own experiments. The colloids prepared in these conditions are composed of aggregates of anatase (~90%) and brookite crystallites (5–6 nm). They are suitable for coatings and have long-term stability (more than one year) in terms of polymorphic composition, crystallite and agglomerate size. Stable sols composed solely of anatase crystallites (4 nm) can be prepared by partially complexing the TIP by acetylacetone before hydrolysis. It is not possible to produce porous films with these colloids because they are stabilized by electrostatic repulsion which causes the particles to organize themselves, during the drying step, to form materials with a close packed structure. However, coatings with controlled porosity can be prepared from these stable sols through the post addition of polymers, like PEG or block copolymers.  相似文献   

13.
In this work the effect of pH and the titanium precursor on the cluster and particle formation during titanium alkoxide based sol–gel processes was investigated using electrospray ionization mass spectrometry (ESI-MS) and dynamic light scattering (DLS). The influence of pH and the titanium precursor on the particle size, morphology, crystallinity and chemical composition of the resulting particles were investigated using differentiel scanning calometry (DSC), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), BET-adsorption isotherms and high resolution transmission electron microscopy (HR-TEM). ESI-MS investigation of the titanium clusters present during the nucleation and growth period showed that the number of titanium atoms in the clusters varied dependent on the alkoxide used. Moreover, it was found that the titanium clusters formed using titanium tetraethoxide (TTE) were smaller than the clusters formed by titanium tetraisopropoxide (TTIP) and titanium tetrabutoxide (TTB) under similar conditions. pH was not found to influence the nature of the titanium clusters present in the sol–gel solution. HR-TEM investigation of the TiO2 particles prepared at pH 7 and 10 showed that the primary particle size of the particles was around 3 nm. However, it was found that these primary particles aggregated to form larger secondary particles in the size order of 300–500 nm range. At pH 3 the particles grew significantly during the drying process due to destabilization of the colloidal solution leading to the formation of a gel. The highest specific surface area was found for particles synthesized under neutral or alkaline conditions based on TTIP. XRD analysis of the TiO2 particles showed that the particles synthesized at 25 °C were amorphous. First after heating the samples to above 300 °C the formation of anatase were observed.  相似文献   

14.
In this article, mechanochemical synthesis of barium titanate from different raw materials was studied. The prepared nanodispersed powders were investigated by means of XRD, DTA-TG, DSC, FTIR, Raman, UV–VIS, ESR spectroscopy, and low-temperature adsorption of nitrogen. Barium titanate possessing high specific surface area was produced directly during dry milling from the mixtures of barium oxides and titanium dioxide low-temperature forms (amorphous and anatase).  相似文献   

15.
The preparation procedure of silica–titania composite oxide using novel solution/sol single precursor containing titanium peroxocomplex and silicic acid has been described. Pechini-type sol–gel process has been used to prepare oxides from the aqueous precursor. Some structural, morphological and textural characteristics of the prepared material have been presented. Composite SiO2/TiO2 has high surface area (c.a. 300 m2/g), and it is composed of anatase nanoparticles with the mean diameter of 5 nm embedded in amorphous silica, then TiO2 prepared via similar method is presented as a mixture of anatase and rutile phases. The proposed synthetic procedure meets the requirements of “green chemistry”.  相似文献   

16.
Titania-silica mesoporous materials have been synthesized by a modified sol-gel technique using a cationic surfactant. The synthesis process was studied using statistical design of experiments to achieve the best conditions for titania-silica preparation. The synthesized materials were characterized by XRD, FT-IR, SEM and surface area measurements. The XRD and SEM results showed an amorphous structure of titania-silica. The surface area measurements using nitrogen adsorption showed type-IV isotherms which indicate the formation of mesoporous structure. A high surface area can be obtained (685 m2/g). The crystal size of titania-silica calculated using Scherrer’s equation was found to be in the range 8–15 nm.  相似文献   

17.
Titanium dioxide is a semiconductor with excellent photo catalytic properties and an important material with high regarded in nanotechnology. In this study, titanium dioxide nanoparticles was successfully synthesized via sol–gel method using tetra-n-butyl orthotitanate, hydrochloric acid and ammonia. Tetra-n-butyl orthotitanate was used as precursor. The ingredients were mixed at ambient temperature for 9 h on a magnetic stirring, sol was formed and converted to gel by adding ammonia. X-ray diffraction analysis clearly showed anatase and rutile phases so that, with increasing calcination temperature anatase converts to the rutile. Scanning electron microscopy was used for agglomerate observations. Energy-dispersive detector analysis was carried out and confirmed the formation of titanium dioxide. The influences of calcination temperature and pH value on particles size were studied. The results indicate that synthesis at room temperature reduced the particle size to 15 nm.  相似文献   

18.
Highly dispersed TiO2 nanoparticles were successfully synthesized by a wet impregnation method using SBA-15 as hard template for confining the growth of TiO2 nanocrystals, and then calcined at 550 degrees C in muffle furnace for 2 h. The as-synthesized samples were characterized with Fourier transform infrared spectra (FTIR), Raman spectroscopy, diffuse reflectance UV-visible spectroscopy (UV-vis), powder X-ray diffraction (XRD), small-angle X-ray diffraction (SAXRD), nitrogen adsorption, transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was found that SBA-15 contained abundant silanol groups after removal of triblock copolymers by ethanol extraction and could easily adsorb a great number of titanium alkoxide via chemisorption. After subsequent hydrolysis of the anchored Ti complexes and calcination of the amorphous TiO2, anatase TiO2 nanocrystals with spherical shape and uniform particle diameter of about 6 nm were formed. A blue shift was observed in UV-vis absorption spectra due to the quantum size effect of TiO2 nanoparticles. Moreover, the as-prepared TiO2 nanoparticles showed a high PL intensity due to an increase in the recombination rate of photogenerated electrons and holes under UV light irradiation.  相似文献   

19.
An amorphous TiO2 gel was obtained by hydrolysing titanium(IV) isopropoxide with a stoichiometric amount of water using SnCl2 as catalyst. In these operative conditions, a TiO2 gel matrix containing a lower fraction of organic residual was obtained with respect to samples prepared by previously modifying the titanium alkoxide precursor with chelating ligands. Dried gel powders were characterized by N2 adsorption analyses, FT-IR and XRD measurements. Thermogravimetric (TG) and differential thermal analysis (DTA) coupled with mass spectrometric (MS) and gas chromatographic (GC) measurements were performed in order to identify the organic products released from TiO2 gel pyrolysis. The Tg-MS semiquantitative analysis of the main evolved species allowed to describe both the chemical composition of the initial TiO2 gel and the chemical rearrangements occurring in the matrix during heating up to its crystallisation to anatase form at 420°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
X-ray phase analysis and adsorption techniques were used to study the effect of heat treatment of starting amorphous titanium dioxide on its structural-adsorption characteristics, which determine the photocatalytic activity in the gas-phase oxidation of acetone and ethanol. In addition to the specific photocatalytic activity of the samples due to the amount of the active anatase TiO2 modification, the adsorption capacity of the photocatalysts, which is a function of the specific surface and pore adsorption volume, affects the rate of the reactions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号