首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using density functional theory within the generalized gradient approximation, we have theoretically studied the formation of neutral metal-aromatic complexes R1-M and R1-M-R2, where M is either neutral lithium, calcium, or gallium and R1 or R2 is benzene or borazine. We first find that calcium atom is an effective mediator for cooperative formation of a sandwich complex with borazine, while others are not. When benzene and borazine are mixed in the presence of calcium, a 1:2:1 mixture of benzene-calcium-benzene, borazine-calcium-benzene, and borazine-calcium-borazine is expected. An "A"-shaped structure is predicted for homo- and heterocomplexes of borazine with partial B-B and B-C bonds, while two rings are planar in the case of homocomplexes of benzene. Our analysis of the electron density distributions in HOMO-1 to LUMO in terms of orbital symmetry in conjunction with analysis of l,m-projected electronic local density of states shows that this correlates with the charge transfer and the interaction of pi states of the rings mediated by empty d-states of Ca, which is ultimately related to the polarity of the B-N bond. We find that there is a large accumulation of electron density on particular atoms upon complex formation, predicting characteristic behavior in electron-transfer reaction and nucleophilic reaction different from those for pure benzene or borazine molecule. The hetero-sandwich complex is of particular interest due to its asymmetrical distribution of excess electrons.  相似文献   

2.
Star‐shaped rigid molecules that comprise a 1,3,5‐trisubstitued benzene core and three oligoaryleneethynylene arms have great potential application in organic light‐emitting devices (OLEDs). Their optical and electronic properties are tuned by the star‐shaped molecular size. To reveal the relationship between the properties and structures, we perform a systemic investigation for these organic molecules. The ground and excited state molecules are studied using density functional theory (DFT), the ab initio HF, and the single excitation configuration interaction (CIS), respectively. And the electronic absorption and emission spectra are investigated with time‐dependent density functional theory (TDDFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials (IP), electron affinities (EA), absorption and emission spectra are controlled by the star‐shaped molecular size, which favor the hole and electron injection into OLEDs. With increasing the molecular conjugated length, the absorption and emission spectra exhibit red shifts to some extent and are in good agreement with the experimental ones. Also, the calculated emission spectra range from 330 to 440 nm. All the calculated show that the star‐shaped molecules are promising as blue light emitting materials  相似文献   

3.
An attempt to tune the electronic properties of pyrene (Py) by coupling it with a strong electron donor (-PhNMe2, DMA)/acceptor (anthronitrile, AN) through an ethynyl bridge has been undertaken. A moderate electron donor (iPrOPh-, IPP)/acceptor (2-quinolinyl, 2Q) has also been incorporated, and all four molecules were studied with reference to a neutral molecule, namely, 1-phenylethynylpyrene (PhEPy). All the arylethynylpyrenes (ArEPy's) have been thoroughly characterized, and their electronic properties were studied by absorption and emission spectral properties of these ArEPy's. The electrochemical characteristics were also studied for arriving at the electrochemical band gap which has been compared with the HOMO-LUMO energy gap derived from the photophysical measurements and theoretical calculations performed by density functional theory (DFT) using B3LYP/6-31G basis sets. The results obtained from experimental and theoretical studies are critically discussed.  相似文献   

4.
We report infrared and electronic absorption spectra of mono, di, tri and tetra ethylene glycol (EG) in gas phase, their cation and anion and in water solvent using density functional theory calculations at B3LYP/TZVP level. Structural paramaters, rotational and centrifugal distortional constants and dipole moments are also reported. A siginificant shifts in vibrational frequencies and peaks in electronic absorption spectra have been observed upon ionization of mono, di, tri and tetra ethylene glycols. We have also obtained experimental vibrational spectrum of monoethylene glycol. Vibrational frequencies of mono ethylene glycol from theory and experiment are compared. We have used integral equation formalism polarizable continuum model (IEFPCM) model to study the influence of water solvent on vibrational frequencies of neutral mono, di, tri and tetra ethylene glycol. Electronic absorption spectra for these molecules have been obtained using Time dependent density functional theory (TDDFT).  相似文献   

5.
Density functional theory is carried out to study cis-doubly N-confused porphyrin and its metal (Cu3+, Ag3+, and Au3+) complexes. The electronic structures and bonding situations of these molecules have been investigated by using the natural bond orbital analysis and the topological analysis of the electron localization function. We have studied the electronic spectra of cis-doubly N-confused porphyrin and its metal complexes with time-dependent density functional theory. The introduction of group 11 transition metals leads to blueshifts of their electronic spectra with respect to that of cis-doubly N-confused porphyrin. In particular, the absorption spectra of the copper complex show some weak Q bands that mainly arise from a combination of ligand-to-metal charge transfer and ligand-to-ligand charge transfer transitions. The relativistic time-dependent density functional theory with spin-orbit coupling calculations indicates that the effects of spin-orbit coupling on the excitation energies of the copper and silver complexes are so small that it is safe enough to neglect spin-orbit interactions for these two complexes. However, it has a significant effect on the absorption spectra of the gold complex.  相似文献   

6.
《结构化学》2019,38(10)
In the given research, the molecular structures of two new compounds, 4-((E)-3-(dimethylamino)styryl)-6-((E)-4-(dimethylamino)styryl)pyrimidine-2-amine(PM-1) and N-(4-((E)-3-(dimethylamino)styryl)-6-((E)-4-(dimethylamino)styryl)pyrimidine-2-yl)-4,6-dichloro 1,3,5-1,3,5-triazin-2-amine(PM-2), have been studied with the use of density functional theory(DFT/B3 LYP/MidiX) in dimethylformamide(DMF) for the first time. The electronic spectra of the new compounds in a DMF solvent were carried out by temporally dependent density functional theory(TD-DFT) method. The computed absorption spectral data of the title compounds are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. The equilibrium geometry, the HOMO and LUMO molecular orbitals, excitation energies, oscillator strengths and Natural Bond Orbital(NBO) analysis for the molecules have also been calculated and presented. FT-IR spectra of the title molecules are recorded and discussed. The electron location function(ELF), localized orbital locator(LOL) and quantum theory of atoms in molecules(QTAIM) analyses were also carried out. On the basis of polyvinyl alcohol(PVA) and synthesized molecules, polarizer for UV/Vis region of the spectrum has been developed.  相似文献   

7.
用量子化学密度泛函理论B3LYP方法,在6-31G(d)水平上对环硼氮烷和苯基对称取代方酸进行几何构型优化.以此为基础,利用TD-DFT方法得到方酸衍生物的UV-Vis吸收光谱.进一步引入外电场,用有限场(FF/DFT-B3LYP)方法探讨了各体系的三阶非线性光学性质(NLO).计算结果显示,对称环硼氮烷取代的方酸衍生物性质不同于苯环取代,取代位置对电荷分布、分子轨道特征和非线性光学性质的影响很大.氮原子与方酸相连时对提高方酸体系的三阶非线性光学性质十分有效,其NLO系数可达2.3808×10-24C·m.  相似文献   

8.
The carbazole-endcapped host molecules with tailoring different heteroaryl core and meta-position linkage mode have great potential on phosphorescent organic light-emitting diodes. To provide a profound view on structure?Cproperty relationships, new linear-shaped counterparts have been designed based on the existing molecular composition and the linkage at para-position (p-type molecules). A series of studies about the influence of the linkage mode on optical and electronic properties of these carbazole derivatives have carried out via density functional theory and time-dependent density functional theory calculations. The geometric and the electronic structure of these molecules in the ground states, ions states, and lowest triplet states have been calculated especially focusing on the analysis of highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps, triplet energies, ionization potentials, electron affinities, reorganization energies, triplet exciton-formation fraction, and absorption spectra. These optoelectronic properties can be effectively tuned by the chemical modifications of different linkage pattern. The good coordination between our calculated results and the available experimental data has been observed. The study reveals that the designed p-type molecules show great promise as new high-performance red host materials with large triplet energy, narrow energy gap, good electron and hole-transport properties, and high triplet exciton-formation fraction.  相似文献   

9.
[reaction: see text] Two series of pi-conjugated bipolar compounds, namely, 9-phenyl-10-anthronitriles (PAN series) and 9-phenylethynyl-10-anthronitriles (PEAN series), having inherent redox centers have been synthesized and their electronic absorption, fluorescence emission, and electrochemical behavior have been studied. Electrochemiluminescence of these molecules bearing weak, strong, and spin-polarized donors is also studied. The observed electronic properties are explained with the help of results obtained from density functional theory (DFT- B3LYP/6-31G) calculations. The structure-property relationships of all the molecules are discussed.  相似文献   

10.
The electronic structure and properties of Cr(CO)3(B3N3H6 ? n F n ) (n = 1?C3) complexes have been explored using hybrid density functional B3LYP theory. Calculations indicate B-fluorinated isomers are more stable, and less polarizable, than N-fluorinated isomers. The aromatic natures of the borazine rings have been analyzed by nucleus independent chemical shift (NICS). The atoms in molecules (AIM) analysis indicates that Cr-C and Cr-N bonds distance is well correlated with the electron density of critical point (??cp) in all species.  相似文献   

11.
A theoretical investigation of the fully optimized geometries and electronic structures of the metal-free (TPdPzH(2)), N,N'-dideuterio (TPdPzD(2)), and magnesium (TPdPzMg) tetra-2,3-pyridino-porphyrazine has been conducted based on density functional theory. The optimized geometries at density functional theory level for these compounds are reported here for the first time. A comparison between the different molecules for the geometry, molecular orbital, and atomic charge is made. The substituent effect of the N atoms on the molecular structures of these compounds is discussed. The IR and Raman spectra for these three compounds have also been calculated at density functional B3LYP level using the 6-31G(d) basis set. Detailed assignments of the NH, NM, and pyridine ring vibrational bands in the IR and Raman spectra have been made based on assistance of animated pictures. The simulated IR spectra of TPdPzH(2) are compared with the experimental absorption spectra, and very good consistency has been found. The isotope effect on the IR and Raman spectra is also discussed.  相似文献   

12.
The structural and optical properties of 4-bromo-1-naphthyl chalcones (BNC) have been studied by using quantum chemical methods. The density functional theory (DFT) and the singly excited configuration interaction (CIS) methods were employed to optimize the ground and excited state geometries of unsubstituted and substituted BNC with different electron withdrawing and donating groups in both gas and solvent phases. Based on the ground and excited state geometries, the absorption and emission spectra of BNC molecules were calculated using the time-dependent density functional theory (TDDFT) method. The solvent phase calculations were performed using the polarizable continuum model (PCM). The geometrical parameters, vibrational frequencies, and relative stability of cis- and trans-isomers of unsubstituted and substituted BNC molecules have been studied. The results from the TDDFT calculations reveal that the substitution of electron withdrawing and electron donating groups affects the absorption and emission spectra of BNC.  相似文献   

13.
A new series of pi-conjugated donor-acceptor compounds (1-6) with inherent redox centers have been prepared and studied with respect to their electronic properties. The photophysical characteristics of these compounds have been studied in relation to their structures. Cyclic voltammetry and UV-vis spectroelectrochemistry were used to probe the ground-state electronic properties of the neutral and charged species. The observed electronic absorption properties of the neutral and charged molecules are explained with the help of frontier orbital structures and electrostatic potential maps obtained from density functional theory (DFT, B3LYP/6-31G) calculations. Electrochemiluminescence (ECL) of this series of donor-substituted phenylethynylanthronitriles with different donors was also studied. The structure-property relationship of all of the compounds is discussed.  相似文献   

14.
采用密度泛函理论(DFT)的B3LYP/6-31G*方法,对4种洛汾碱类化合物的几何构型进行了优化,在此基础上计算分子的电子结构,并结合有限场FF方法研究了二阶非线性光学(NLO)性质.用含时密度泛函理论(TD-DFT)对上述化合物分子进行吸收光谱的研究.研究表明在4,5-二-苯基-2-对甲酰苯基咪唑生色团中4,5苯环上引入硝基和3位N原子引入苄基改变分子的共轭平面,使二阶非线性极化率总有效值(βtot)减小,吸收峰总体蓝移.同时还发现,在CH2Cl2溶剂中a和c分子的λmax主要来源于HOMO→LUMO的π一π*跃迁,b和d分子的λmax主要来源于HOMO→LUMO+2的π→π*跃迁.  相似文献   

15.
The density functional theory (DFT) is used to study the geometries, and electronic structures of triplet and singlet of borazyne and B-substituted of borazyne. The aromaticity of these systems is analyzed in the light of nucleus-independent chemical shift (NICS), average of two-center indices (ATI). These methods show increasing of aromaticity in deactivating groups. The relation between electron density in ring critical point (RCP) and NICS(1.0) is observed. The most important interaction in these molecules has been investigated by natural bonding orbital method (NBO).  相似文献   

16.
王振  张静 《结构化学》2011,30(10):1367-1374
Quantum-chemical calculations on some derivatives of [n]-prismanes expanded by ethynyl or ethenyl groups have been performed using density functional theory (DFT) method.Their geometric structures,electronic structures,vertical ionization potentials and vertical electron affinities have been obtained at the B3LYP/6-31G** level of theory.Meanwhile,the total strain energy has been investigated in detail and compared with [n]-prismane and other derivatives.The present paper has also computed the enthalpies of formation for different isomers so as to evaluate their thermal stabilities.  相似文献   

17.
Geometries, electronic structure and electronic absorption spectra of thiophene based dye-sensitized solar cells were performed using Density Functional Theory (DFT) and time dependent density functional theory (TD-DFT). Different electron donating and electron withdrawing groups have been substituted. Geometries and electronic properties have been computed at B3LYP/6-31G7 and absorption spectra at TD-B3LYP/6-31G7 level of theory. Major change in bond lengths and bond angles occurs in the system where there is electron withdrawing or electron donating groups have been substituted. In SYSTEM-2 and SYSTEM-3 intra charge transfer has been observed. HOMO of SYSTEM-2 and SYSTEM-3 is delocalized on left side while LUMO on right side of the molecule. In SYSTEM-1, HOMO is on left side while LUMO is in the center. The designed systems show two absorption peaks for each of the system. In short, choice of appropriate electron withdrawing and donating groups is very important for improving the performance of dye-sensitized solar cells.  相似文献   

18.
Discotic liquid crystal (DLC) materials have attracted considerable attention mainly due to their high charge carrier mobilities in quasi‐one‐dimensional columns. In this article, five hexaazatrinaphthylene‐based DLC molecules were investigated theoretically, and their frontier molecular orbital energy levels, crystal structures, and electron/hole drift mobilities were calculated by combination of density functional theory (DFT) and semiclassical Marcus charge transfer theory. The systems studied in this work include three experimentally reported molecules ( 1 , 2 , and 3 ) and two theoretically designed molecules ( 4 and 5 ). Compared with the 1 – 3 compounds, 4 and 5 have three more extended benzene rings in the π‐conjugated core. The present results show that the orders of the frontier molecular orbital energy levels and electron drift mobilities agree very well with the experiment. For 4 and 5 , the electron/hole reorganization energies are lower than those of compounds 1 – 3 . Furthermore, the calculated electron/hole transfer integral of 5 is the largest among all the five systems, leading to the highest electron and hole mobilities. In addition, the hydrophobicity and solubility were also evaluated by DFT, indicating that compound 5 has good hydrophobicity and good solubility in trichloromethane. As a result, it is expected that compound 5 can be a potential charge transport material in electronic and optoelectronic devices. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
Fluoranthene and benzo[k]fluoranthene-based oligoarenes are good candidates for organic light-emitting diodes (OLEDs). In this work, the electronic structure and optical properties of fluoranthene, benzo[k]fluoranthene, and their derivatives have been studied using quantum chemical methods. The ground-state structures were optimized using the density functional theory (DFT) methods. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-B3LYP) and configuration interaction singles (CIS) methods. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the TD-DFT method with a variety of exchange-correlation functionals. All the calculations were carried out in chloroform medium. The results show that the absorption and emission spectra calculated using the B3LYP functional is in good agreement with the available experimental results. Unlikely, the meta hybrid functionals such as M06HF and M062X underestimate the absorption and emission spectra of all the studied molecules. The calculated absorption and emission wavelength are more or less basis set independent. It has been observed that the substitution of an aromatic ring significantly alters the absorption and emission spectra.  相似文献   

20.
The electronic structure, chemical bonding, and excitation spectra of neutral, cationic, and anionic diatomic molecules of Cu and 14 group elements formulated as [CuE]+/0/? (E = C, Si, Ge, Sn, Pb) were investigated by density functional theory (DFT) and time‐dependent (TD)‐DFT methods. The electronic and bonding properties of the diatomics analyzed by natural bond orbital (NBO) analysis approch revealed a clear picture of the chemical bonding in these species. The spatial organization of the bonding between Cu and E atoms in the [CuE]+/0/? (E = Si, Ge, Sn, Pb) molecules can easily be recognized by the cut‐plane electron localization function representations. Particular emphasis was given on the absorption spectra of the [CuE]+/0/? which were simulated using the results of TD‐DFT calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP functional. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号