首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

2.
Study of the sulphosalicylate complexes of copper(II), nickel(II), cobalt(II) and uranyl(II) by means of cation-exchange resins.The conditional stability constants of the 1:1 complexes of the sulphosalicylate ions (L3-) with copper(II), nickel(II), cobalt(II) and uranyl ions have been determined in a sodium perchlorate solution (0.1 M) and at various pH values by a cation-exchange method based on Schubert's procedure. The limits of application of the method are discussed. The variation with pH of the conditional stability constants can be explained by the existence of the complexes: CuH2L, CuHL, CuL-; NiH2L+, NiHL, NiL-; CoHL, CoL-; UO2H2L+, UO2HL, UO2L-, UO2LOH2-. The stability constants of these complexes are reported. Distribution diagrams of the various complexes of each element with pH and total concentration of sulphosalicylate parameters are given.  相似文献   

3.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

4.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

5.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

6.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

7.
Summary Nickel(II), palladium(II), cobalt(II) and copper(II) complexes of the ligandN,N-1,2-propane-bis(methyl 2-amino-cyclopent-1-ene-dithiocarboxylate) (H2L1),N,N-1,3-propane-bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate) (H2L2) andN,N-[bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate)] diethylenetriamine (H2L3) have been synthesised. Both H2L1 and H2L2 form complexes of the type ML, and all but the copper(II) complexes, are square planar. In the copper(II) complexes tetrahedral distortion is significantly more with CuL2. From H2L3 square planar complexes of the type [M(HL3)X] (M=Ni, X=Cl, Br, I or SCN; M=Pd, X=Cl or Br) have been obtained in which the donor unit involved is N2SX. The composition of the cobalt(II) and copper(II) complexes is [M(H2L3)X2] (X=Cl or Br) which contain the chromophore [MN3X2].  相似文献   

8.
Two new sterically demanding diaminophosphinothiolate ligands (HL1 and HL2) have been prepared and the X-ray crystal structure of the Li salt of HL2 has been determined. The complex [Pd(L1)2] was fully characterized, but in contrast to other phosphinothiolates, complexes with the M(L)3 stoichiometry could not be prepared. Reaction of LH1 with Ni(II) led to cleavage of the arythiolate group and isolation of a thiolate bridged dimer, confirmed by an X-ray crystal structure. The Rh(I) complexes [Rh(nbd)L] (L = L1, L2) were characterized including an X-ray structure.  相似文献   

9.
A new series of UO2(II) and ZrO(II) azo‐complexes based on 5‐nitro‐8‐hydroxyquinoline; [UO2(H2L1)(NO3)EtOH] (1), [ZrO(H2L1)(NO3)H2O] (2), [UO2(HL2)(NO3)EtOH]3H2O (3), [ZrO(HL2)(NO3)EtOH] (4), [UO2(HL3)(NO3)(H2O)3]2H2O (5) and [ZrO(HL3)(NO3)EtOH] (6); have been synthesized. The structure of these complexes has been characterized using elemental analysis, thermal analysis, molar conductance, UV–vis, IR, electron impact mass, X‐ray powder diffraction and NMR spectra. The results revealed the formation of non‐electrolyte mononuclear complexes via the N atom of the azo group or of the quinoline ring and the oxygen atom of the deprotonated OH. Fluorescence properties of the synthesized complexes have been examined and the fluorescence quantum yield (Φf) has been determined. The complexes have been tested as cell staining and imaging under the fluorescent microscope. The data showed that complexes 1 and 2 efficiently stain the nuclei in addition to some focal cytoplasmic areas. Other than complexes 3 and 4 exclusively stained the nuclei. On the other hand, complexes 5 and 6 stained the cytoplasm exclusively. It has been demonstrated that complex 4 was the most effective in cell staining. The binding constant (Kb) with DNA was calculated using UV–vis absorption titration and fluorescence spectral methods. It was concluded that complex 4 can be used effectively as fluorescent probes in studying cell biology.  相似文献   

10.
A bidentate NO donor Schiff base, 2-(((2-chloro-5- (trifluoromethyl)phenyl)imino)methyl) phenol ( HL 1 ) and its complexes [Co(L1)2(H2O)2] ( 1 ), [Cu(L1)2] ( 2 ), [Mn(L1)2(H2O)2] ( 3 ), [Ni(L1)2(H2O)2] ( 4 ), [Pd2(L1)2(OAc)2·1.16H2O] ( 5 ), [Pt(L1)2] ( 6 ) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, IR, 1H-NMR, 13C-NMR, UV–Vis, mass spectroscopies and X-ray powder diffraction (XRD). The molecular structures of ligand HL 1 and two complexes ( 2 and 5 ) were confirmed by X-ray crystallography analysis on the monocrystal. In this complexes, the metal ions are in distorted square-planar environments. The copper (II) complex is mononuclear and crystallized in a monoclinic space group P21/c, whereas palladium (II) complex is dinuclear and crystallized in the trigonal crystal system R-3. The toxicity of the ligand and complexes was evaluated on both plant and animal cells, using the plant species Triticum aestivum L. and the crustacean Artemia franciscana Kellogg. At concentrations up to 100 μM the compounds presented very little toxicity on Artemia franciscana Kellogg. Moreover, the palladium (II) complex was devoid of any toxicity on the plant cells.  相似文献   

11.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   

12.
Summary Two types of the CoII complexes L1Co (H2L1=N,N-ethylenebis(isonitrosoacetylacetoneimine) were prepared. In type (a) the chelate rings are five-membered whereas in type (b) they are six-membered. The type (b) complexes were converted to type (a) in refluxing solutions. Half-ionization of the ligand is observed in the complexes HL1 Co(O2CMe) and HL1MnCl, where the chelate rings are five- and six-membered respectively. The octahedral complex L1FeCl·H2O has chelate rings of type (a) as does the complex L2Co (H2L2=unsymmetric Schiff baseN,N-ethylene(isonitrosoacetylacetoneimineacetylacetoneimine). Twocis complexes (La 2Lb 3)Pd and (La 3)2Pd are characterized (HL3=isonitrosoacetylacetoneimine, (a) and (b) denote the type of chelate ring). Structures for the metal complexes and the sizes of the chelate rings are suggested on the basis of analytical and spectral evidence.  相似文献   

13.
Four novel molecular square grids were achieved by self-assembly using the flexible ligands bis(di-2-pyridyl ketone) thiocarbohydrazone (H2L1), bis(quinoline-2-carbaldehyde) thiocarbohydrazone (H2L2), bis(di-2-pyridyl ketone) carbohydrazone (H2L3) and bis(2-benzoylpyridine) carbohydrazone (H2L4). Three complexes were given a general formula of [Ni(HL)]4[PF6]4 · nH2O and one [Ni2(HL2)L2]2(PF6)2 · 7H2O. The MALDI-MS spectra reveal the formation of tetranuclear molecular squares. The square grid of the Ni(II) centers in all the complexes were organized by deprotonated ligands. The complex [Ni(HL1)]4[PF6]4 · 11H2O crystallized as [Ni(HL1)]4(PF6)4 · 0.5 CH3CH2OH · 2.8H2O and X-ray study revealed octahedral geometries around the Ni(II) centers. Variable temperature magnetic studies suggest intramolecular antiferromagnetic coupling between the Ni(II) electrons by a super exchange mechanism through intervening sulfur/oxygen atoms.  相似文献   

14.
New complexes of Co(II), Ni(II), and Cu(II) nitrates, chlorides, and perchlorates with 4-(4-hydroxyphenyl)-1,2,4-triazole (L) were obtained and examined by single-crystal X-ray diffraction, X-ray powder diffraction, and electronic absorption and IR spectroscopy. The cations of all the complexes have linear trinuclear structures. Ligand L is coordinated to the metal ions in a bidentate bridging fashion through the N(1) and N(2) atoms of the heterocycle. The coordination polyhedron of the metal atoms is a distorted octahedron. The molecular and crystal structures of the complexes [Co3L6(H2O)6](ClO4)6 · 3C2H5OH · 3.75H2O and [M3L6(H2O)6](ClO4)6 · 6H2O (M = Cu2+ and Ni2+) were determined.  相似文献   

15.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

16.
Three new coordination complexes, 2{[Co(L1)2]ClO4} · 0.5CH3OH (1), [Mn(L2)2] (2), and [Cu(HL2)(L2)]ClO4 · 2H2O (3) have been synthesized from two tridentate N,N,O-donor hydrazone ligands HL1, 2-acetylpyridine-salicyloylhydrazone, and HL2, 2-benzoylpyridine-salicyloylhydrazone, respectively and thoroughly characterized by elemental analysis, FT-IR, UV–Vis, electrochemical, and room temperature magnetic susceptibility measurements. Structures of the complexes have been unequivocally established by single crystal X-ray diffraction technique. Structural analysis reveals that 1 consists of two chemically similar but crystallographically independent cationic [Co(L1)2]+ units and 2 consists of a neutral [Mn(L2)2] molecule while 3 consists of a cationic [Cu(HL2)(L2)]+ unit. Metal ions display distorted octahedral geometry in 1 and 2 while in 3 it shows a distorted square pyramidal geometry. Ligand conformations around the metal ions are stabilized by the presence of intra-ligand hydrogen bonding in all the complexes. Structure of 3 reveals that a perchlorate ion linked to the complex by hydrogen bonding via a water molecule.  相似文献   

17.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (HLI) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfinyl]acetic acid (HLII) were carried out. The investigation of the molecular and electronic structure of Cu(II), Ni(II), Zn(II), Fe(II) and Mn(II) complexes has been performed within the density functional theory (DFT) framework. The computed properties were compared to the experimental ones, and molecular structures of the compounds were proposed based on the array of spectral data and quantum chemical calculations. Antibacterial activity of the Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II), Co(II), Ni(II) and Zn(II) complexes and three standard antibiotics; it was found to follow the order: (1) Сu(LI)2 > Mn(LI)2 > HLI > Ni(LI)2 > Zn(LI)2 > Fe(LI)2 > Co(H2O)2LI; (2) Cu(LII)2 > Сo(LII)2 > Ni(LII)2 > Mn(H2O)2(LII)2 > Fe(LII)2 > HLII > Zn(LII)2; their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. The complexes Сu(LI)2, Mn(LI)2 and Co(LII)2 with the high reducing ability were found to be characterized by the highest rates of Cyt с reduction. NADPH:cytochrome P450-reductase had no substantial effect on the rate of сytochrome c reduction with HLI and HLII ligands.  相似文献   

18.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

19.
Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X?=?Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X?=?Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.  相似文献   

20.
Complex formation of magnesium(II), manganese(II), nickel(II), copper(II) and lead(II) with S-carboxymethyl-L-cysteine in aqueous solution.The complex formation between Mg(II), Mn(II), Ni(II). Cu(II), Pb(II) ions and S-carboxy-methyl-l-cysteine (H2A) has been studied by measurement of pH at 25°C and constant ionic strength (1 M NaClO4). Although no interaction occurs with Mg(II), this work provides evidence for a variety of complexes: MnA; CuHA+; CuA; CuA22-; NiHA+; NiA; NiA22-; PbHA+; PbA et PbA(OH)-. The overall formation constants of all these species are computed and refined. The results allow the determination of the distribution of the complexes as a function of pH; some structural features of the metal complexes in solution are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号