首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In modern solution nuclear magnetic resonance (NMR), the spectral resolution is mainly dependent on the spatial homogeneity and temporal stability of the magnetic field. The spectral linewidths are usually proportional to the overall field homogeneity and the stability experienced by the sample. Many high-resolution NMR methods have been developed, but few are applicable in inhomogeneous and unstable fields. In this paper, a high-resolution three-pulse method based on intermolecular zero-quantum coherences (iZQCs) is proposed. Since this method is insensitive to field inhomogeneity and instability, spectral information such as the chemical shift can be retained in the resulting spectra. In comparison with the CPMG-HOMOGENIZED method, the new method provides almost pure solvent–solute iZQC signals.  相似文献   

2.
We have measured the modifications of frequency-modulated selective reflection spectra of the CsD 2 line recorded with circularly polarized light by a longitudinal magnetic field in the range 120–280 G. The spectra recorded with + and polarizations were found to be qualitatively different, but are well described by a theoretical model based on the diagonalization of the hyperfine-Zeeman Hamiltonian. The technique presented here is a simple way for investigating fully resolved complex Zeeman spectra in moderate magnetic fields and may find applications in the investigation of anisotropies in long-range atom-surface interactions.  相似文献   

3.
The possibility of exciting and detecting proton NMR double-quantum coherences in inhomogeneous static and radiofrequency magnetic fields was investigated. For this purpose specialized pulse sequences which partially refocus the strongly inhomogeneous evolution of the spin system and generate double-quantum buildup and decay curves were implemented on the NMR MOUSE (mobile universal surface explorer). The theoretical justification of the method was developed for the simple two-spin-1/2 system. The performances of the same pulse sequences were also tested on a solid-state high-field NMR spectrometer. It was shown that DQ decay curves have a better signal-to-noise ratio in the initial time regime than DQ buildup curves. The double-quantum buildup and decay curves were recorded for a series of cross-linked natural rubber samples. These curves give access to quantitative values of the ratio of proton total residual dipolar couplings which are in good agreement with those measured in homogeneous fields. A linear dependence of these ratios on the sulfur-accelerator content was found.  相似文献   

4.
5.
This paper reviews and compares the use of nuclear magnetic resonance (NMR) and related hyperfine techniques [muon spin rotation (μSR) and, to a lesser extent, other methods] in the study of 4f and 5f magnetism in “unstable magnets”, i.e., intermediate-valent and heavy-fermion materials. In both NMR and μSR the features of interest are the spectral shape, the frequency shiftK (Knight shift in metals) and the spin-lattice relaxation rate 1/T 1. For temperatures below the characteristic or “Kondo” temperatureT 0 these experiments given evidence for (1) modification of the transferred hyperfine field [nonlinearK(χ)]. (2) spin fluctuations with a characteristic fluctuation rate ∼k B T 0/h, (3) strong energy-gap anisotropy (zeros of the gap along lines on the Fermi surface) in heavy-fermion superconductors, (4) spin-singlet Cooper pairing from the change in muon Knight shift in superconducting UBe13, and (5) very weak static magnetism (10−1–10−3 μB/f atom) in CeAl3, CeCu2Si2, U1−x Th x Be13 (x=0.033), and UPt3. There is some controversy concerning the interpretation of 1/T 1 well aboveT 0 in UBe13; the situation is reviewed.  相似文献   

6.
Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.  相似文献   

7.
Two-dimensional diffusion exchange experiments in the presence of a strong, static magnetic field gradient are presented. The experiments are performed in the stray field of a single sided NMR sensor with a proton Larmor frequency of 11.7 MHz. As a consequence of the strong and static magnetic field gradient the magnetization has contributions from different coherence pathways. In order to select the desired coherence pathways, a suitable phase cycling scheme is introduced. The pulse sequence is applied to study diffusion as well as the molecular exchange properties of organic solvents embedded in a mesoporous matrix consisting of a sieve of zeolites with a pore size of 0.8 nm and grain size of 2 μm. This pulse sequence extends the possibilities of the study of transport properties in porous media, with satisfying sensitivity in measurement times of a few hours, in a new generation of relatively inexpensive low-field NMR mobile devices.  相似文献   

8.
The NMR-MOUSE is a unilateral and mobile NMR sensor which operates with highly inhomogeneous magnetic fields. To produce a mobile NMR unit, RF excitation is sought, which can be produced with the most simple equipment, in particular nonlinear, low-power amplifiers, and to observe a free induction decay in strongly inhomogeneous fields, the excitation needs to be selective. The possibility to produce selective excitation by sequences of hard low-power radiofrequency pulses in the strongly inhomogeneous magnetic fields of the NMR-MOUSE is explored. The use of the DANTE sequence for selection of magnetization from parts of the sensitive volume was investigated for longitudinal and transverse magnetization by computer simulations and experiments. The spectra of the recorded FIDs and echo signals are in good agreement with those simulated for the excitation, which verifies the concept of the DANTE excitation. The results obtained are an important step towards a low-power operation of the NMR-MOUSE to improve its mobility.  相似文献   

9.
A method of NMR imaging and elimination of image distortions in an inhomogeneous and unstable polarizing magnetic field is developed. An algorithm is given to determine the plane shifts of signals caused by a change in the magnetic field. Institute of Applied Physics of the National Academy of Sciences of Belarus, 16, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Priklanoi Spektroskopii, Vol. 66, No. 2, pp. 270–274, March–April, 1999.  相似文献   

10.
11.
Magic-angle sample spinning is one of the cornerstones in high-resolution NMR of solid and semisolid materials. The technique enhances spectral resolution by averaging away rank 2 anisotropic spin interactions, thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. In principle, it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied (e.g., magic-angle rotation of the B0 field). Here we will review some recent experimental results that show progress toward this goal. Also, we will explore some alternative approaches that may enable the recovery of spectral resolution in cases where the field is rotating off the magic angle. Such a possibility could help mitigate the technical problems that render difficult the practical implementation of this method at moderately strong magnetic fields.  相似文献   

12.
Mechanical rotation of a sample at 54.7 degrees with respect to the static magnetic field, so-called magic-angle spinning (MAS), is currently a routine procedure in nuclear magnetic resonance (NMR). The technique enhances the spectral resolution by averaging away anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. It should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS). Here, this principle is experimentally demonstrated in a static sample of solid hyperpolarized xenon at approximately 3.4 mT. By extension to moderately high fields, it is possible to foresee interesting applications in situations where physical manipulation of the sample is inconvenient or impossible. Such situations are expected to arise in many cases from materials to biomedicine and are particularly relevant to the novel approach of ex situ NMR spectroscopy and imaging.  相似文献   

13.
Coherence selection gradients have been considered as indispensable for high-resolution NMR spectroscopy in inhomogeneous fields utilizing the CRAZED-type sequences. However, our experimental results demonstrate that these gradients can be omitted if an appropriate phase cycling is applied. The measured linewidth of reconstructing 1D high-resolution spectral peaks does not depend on the dipolar correlation distance determined by the coherence selection gradients, but is only affected by diffusion and T(2) relaxation. This finding suggests the need to reconsider the mechanism for the iMQC-based high-resolution spectroscopy.  相似文献   

14.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

15.
An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine1H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo1H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality.  相似文献   

16.
The screening current-induced magnetic field in the (Bi,Pb)2Sr2Ca2Cu3Ox (Bi-2223) insert coil proposed for a beyond 1 GHz nuclear magnetic resonance (NMR) spectrometer may generate a long-term field drift, resulting in a loss of field-frequency lock operation and an inability to make high resolution NMR measurements. The measured screening current-induced magnetic field of a Bi-2223 double-pancake coil exhibits a hysteresis effect at 4.2 K that is reproduced by a numerical simulation based on a finite thickness rectangular superconductor bar model. The screening current-induced field at the coil center is of opposite polarity to that generated by the coil current, and thus the apparent field intensity shows a positive drift with time. On the contrary, the field at a coil end is of the same polarity as the coil field, and the apparent field intensity decreases with time. If we wait for ∼1000 h after coil excitation, the field drift rate approaches the field decay rate of the persistent current of 10−8 h−1, suitable for a long-term NMR measurement in a beyond 1 GHz NMR spectrometer.  相似文献   

17.
18.
19.
High-resolution 2D NMR spectra in inhomogeneous fields can be achieved by the use of intermolecular multiple-quantum coherences and shearing reconstruction of 3D data. However, the long acquisition time of 3D spectral data is generally unbearable for in vivo applications. To overcome this problem, two pulse sequences dubbed as iDH-COSY and iDH-JRES were proposed in this paper. Although 3D acquisition is still required for the new sequences, the high-resolution 2D spectra can be obtained with a relatively short scanning time utilizing the manipulation of indirect evolution period and sparse sampling. The intermolecular multiple-quantum coherence treatment combined with the raising and lowering operators was applied to derive analytical signal expressions for the new sequences. And the experimental observations agree with the theoretical predictions. Our results show that the new sequences possess bright perspective in the applications on in vivo localized NMR spectroscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号