首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Resistive and resistive-superconducting hybrid magnets can generate dc magnetic fields much higher than conventional superconducting NMR magnets but the field spatial homogeneity and temporal stability are usually not sufficient for high-resolution NMR experiments. Hardware and technique development addressing these issues are presented for high-resolution NMR at magnetic fields up to 40T. Passive ferromagnetic shimming and magic-angle spinning are used effectively to reduce the broadening from inhomogeneous magnetic field. A phase correction technique based on simultaneous heteronuclear detection is developed to compensate magnetic field fluctuations to achieve high spectral resolution.  相似文献   

2.
The time evolution of zero-quantum-coherences (ZQCs) is insensitive to magnetic field inhomogeneity. Using a 2D indirect ZQC detection method it is shown that high-resolution (1)H NMR spectra can be obtained from rat brain in vivo at 11.74T that are immune to magnetic field inhomogeneity. Simulations based on the density matrix formalism, as well as in vitro measurements are used to demonstrate the features of 2D ZQC NMR spectra. Unique spectral information which is normally not directly available from regular (1)H NMR spectra can be extracted and used for compound identification or improved prior knowledge during spectral fitting.  相似文献   

3.
高分辨核磁共振(Nuclear Magnetic Resonance,NMR)谱的获得通常需要高度稳定且均匀的强静磁场. 阻抗磁体或阻抗-超导混合磁体可获得比超导磁体高得多的磁场, 但它们的磁场的稳定性与均匀性比较差;另一方面, 在活体定域波谱研究中,样品内部组分的磁化率差异,运动或生理活动等作用将不可避免地导致磁场的不均匀不稳定,并且这些不稳定不均匀性无法通过锁场匀场等传统的方法消除. 基于分子间零量子相干的方法、空间编码单扫描快速方法、反卷积技术等日渐成为在不均匀不稳定磁场下获取高分辨率的NMR谱的研究热点.  相似文献   

4.
The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.  相似文献   

5.
In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by con- ventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.  相似文献   

6.
The use of ultrafast magic angle spinning (> 30 kHz) in tandem with delayed echo acquisition is shown to yield very high-resolution lH MAS NMR spectra of complex natural organic materials. For the first time, very high-resolution 1H MAS NMR spectra are reported for cork and wood components, two natural materials with great economic importance. The effect of the spinning rate on the 1H NMR spectra was evaluated with single-pulse acquisition and delayed-echo acquisition. The delayed-echo acquisition spectra presented linewidths as sharp as 67 and 25 Hz. The narrow peaks, characterised by proton spin-spin and spin-lattice relaxation, were assigned to the isotropic chemical shifts and the general spectral features were shown to correlate with the sample chemical structure. The tentative assignments of cork 1H MAS NMR signals were presented.  相似文献   

7.
A method for compensating effect of field fluctuation is examined to attain high-resolution NMR spectra with resistive and hybrid magnets. In this method, time dependence of electromotive force induced for a pickup coil attached near a sample is measured synchronously with acquisition of NMR. Observed voltage across the pickup coil is converted to field fluctuation data, which is used to deconvolute NMR signals. The feasibility of the method is studied by (79)Br MAS NMR of KBr under a 30T magnetic field of a hybrid magnet. Twenty single-scan NMR signals were accumulated after the manipulation, resulting in a high-resolution NMR spectrum.  相似文献   

8.
We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of 11 kHz combined with 1H decoupling at 1–2 kHz are sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50 kHz 1H decoupling when the same acquisition times (50 ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (>150 ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low-power decoupling are 70–80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies.  相似文献   

9.
We describe a simple yet highly effective optimization strategy for SPINAL-64 1H decoupling conditions for magic-angle spinning solid-state NMR. With adjustment of the phase angles in a coupled manner, the optimal conditions resulting from three parameter optimizations can be determined with adjustment of a single phase. Notably, echo T? relaxation times for 13C and 1?N show significant enhancement (up to 64%), relative to the previous described SPINAL-64 conditions, under the moderate 1H decoupling levels (60-100 kHz) and MAS rate (13.3 kHz) commonly employed for high-resolution SSNMR spectroscopy of proteins. Additionally, we also investigated the effect at higher spinning rate (33.3 kHz) and compared the results with other 1H decoupling schemes (TPPM, XiX), as well as SPINAL-64 with the originally reported optimal values.  相似文献   

10.
In modern solution nuclear magnetic resonance (NMR), the spectral resolution is mainly dependent on the spatial homogeneity and temporal stability of the magnetic field. The spectral linewidths are usually proportional to the overall field homogeneity and the stability experienced by the sample. Many high-resolution NMR methods have been developed, but few are applicable in inhomogeneous and unstable fields. In this paper, a high-resolution three-pulse method based on intermolecular zero-quantum coherences (iZQCs) is proposed. Since this method is insensitive to field inhomogeneity and instability, spectral information such as the chemical shift can be retained in the resulting spectra. In comparison with the CPMG-HOMOGENIZED method, the new method provides almost pure solvent–solute iZQC signals.  相似文献   

11.
Strong and extremely homogeneous static magnetic field is usually required for high-resolution nu-clear magnetic resonance (NMR). However, in the cases of in vivo and so on, the magnetic field inho-mogeneity owing to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods such as shimming. Recently, intermolecular multiple quantum coherences (iMQCs) have been employed to eliminate inhomogeneous broadening and obtain high-resolution NMR spectra, especially for in vivo samples. Compared to other high-resolution NMR methods, iMQC method exhibits its unique feature and advantage. It simultaneously holds information of chemical shifts, multiplet structures, coupling constants, and relative peak areas. All the information is often used to analyze and characterize molecular structures in conventional one-dimensional NMR spec-troscopy. In this work, recent technical developments including our results in this field are summarized; the high-resolution mechanism is analyzed and comparison with other methods based on interactions between spins is made; comments on the current situation and outlook on the research directions are also made.  相似文献   

12.
In this work, piezoelectricity of individual ZnO nanobelts grown along the [0?1????0] direction is studied using piezoresponse force microscopy (PFM). It is found that the effective piezoelectric coefficient of these NBs, $d_{33}^{\mathrm{eff}}$ , is increasing from 2.7?pm/V at 30?kHz to 44?pm/V at 150?kHz. The results were explained by the Debye model, where structural inhomogeneity in our NBs was shown to be responsible for piezoelectric enhancement.  相似文献   

13.
High-resolution NMR spectroscopy of 1H spins in the solid state is normally rendered difficult due to the strong homonuclear 1H–1H dipolar couplings. Even under very high-speed magic-angle spinning (MAS) at ca. 60–70 kHz, these couplings are not completely removed. An appropriate radiofrequency pulse scheme is required to average out the homonuclear dipolar interactions in combination with MAS to get high-resolution 1H NMR spectrum in solid state. Several schemes have been introduced in the recent past with a variety of applications also envisaged. Development of some of these schemes has been made possible with a clear understanding of the underlying spin physics based on bimodal Floquet theory. The utility of these high-resolution pulse schemes in combination with MAS has been demonstrated for spinning speeds of 10–65 kHz in a range of 1H Larmor frequencies from 300 to 800 MHz.  相似文献   

14.
核磁共振(NMR)谱图可在不破坏生物样品的状态下提供组织成分组成及其含量的信息,已被广泛应用于生物、医学和食品检测等领域.NMR谱图分辨率越高,提供的与组织成分相关的信息越丰富、越准确,也越有利于未知成分的定性和定量分析.传统的高分辨NMR谱图通常要在均匀磁场下采集.但在实际应用中,均匀的磁场较难获得.这就使得我们采集的NMR谱图的分辨率,以及由此获得的生物组织成分组成和含量等信息的准确性受到影响.源于远程偶极相互作用的分子间双量子相干(iDQC)技术对磁场均匀度不敏感,可在不均匀场下获得高分辨率NMR谱图.本文采用基于iDQC技术的IDEAL-Ⅱ序列对甲基丙烯酸丁酯、蕃茄和西瓜三种样品进行了NMR实验,结果证明基于iDQC技术在不均匀场下获得水果的高分辨NMR谱图是可行的,这对食品科学以及食品检测具有积极的意义.  相似文献   

15.
A new approach to optimizing shim coil currents for magnetic resonance magnets is presented. The new approach orthogonalizes the shim coil gradients to allow a simple one-dimensional optimization for each orthogonalized "composite shim." The technique demands no specialized equipment, requiring only the acquisition of simple one-dimensional NMR spectra. Examples from two high-resolution NMR spectrometers are presented, where the shim currents found by the new algorithm provide higher resolution than was obtained by the spectrometer vendor's installation engineers using field-mapping techniques. The examples shown demonstrate the advantages of the technique for high-resolution NMR, but we expect the approach will also find application in a broad variety of areas including imaging and in vivo spectroscopy.  相似文献   

16.
Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.  相似文献   

17.
Novel procedures for the spectral assignment of peaks in high-resolution solid-state (13)C NMR are discussed and demonstrated. These methods are based on the observation that at moderate and already widely available rates of magic-angle spinning (10--14 kHz MAS), CH and CH(2) moieties behave to a large extent as if they were effectively isolated from the surrounding proton reservoir. Dipolar-based analogs of editing techniques that are commonly used in liquid-state NMR such as APT and INEPT can then be derived, while avoiding the need for periods of homonuclear (1)H--(1)H multipulse decoupling. The resulting experiments end up being very simple, essentially tuning-free, and capable of establishing unambiguous distinctions among CH, CH(2), and --C--/-CH(3) carbon sites. The principles underlying such sequences were explored using both numerical calculations and experimental measurements, and once validated their editing applications were illustrated on a number of compounds.  相似文献   

18.
We describe a method allowing the determination of the effectiveB1field amplitude distribution in a high-resolution NMR spectrometer. This method which can be adapted to almost any sequence, essentially consists of a nutation followed by a purgingB0gradient pulse. Experimental results obtained with this approach are described in homonuclear and heteronuclear cases. The experimental distributions are used to estimate the biases induced byB1inhomogeneity, as well as the loss of RF power on heteronuclear transverse self-relaxation rate determination. In this type of measurement, the experimental biases induced on the intensities can be as large as 5% for long mixing times.  相似文献   

19.
Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about ±20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets.  相似文献   

20.
以万里长城为代表的古建筑是世界瑰宝,更是中华民族的象征和骄傲.本文提出利用便携式核磁共振(NMR)装置来探测研究这类古建筑的建筑材料,在不对其造成损伤的基础上,发掘其隐含的科学、技术和工程相关的丰富信息.为此,作为第一步,设计了适合于探测这类古建筑的便携式单边NMR探测器组合式磁体.该探测器的磁体结构以semi-Halbach为基础,通过不同磁体模块间的组合得到对应移动探测模式、长距离探测模式和均匀磁场探测模式的磁体结构.随后根据优化结果,设计加工了磁体组件,并采用该磁体进行了流体、长城城砖和现代红砖的NMR实验,实测结果与模拟一致.该组合式磁体的优点在于通过不同磁体模块组合,实现了多种探测方式,适用于探测长城等这类古建筑物需要多种探测模式的科学研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号