首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We introduce a numerical in-focus Fourier-domain optical coherence tomography(in-focus FD-OCT) which can measure cross-sectional images of samples with the high lateral resolution comparable with the resolution in the focal plane in overall range of measurement. In this method, the lateral resolution is enhanced by lateral signal processing of a complex OCT image obtained with FD-OCT. Quantitative evaluation of this method and application to measurement of a porcine eyeball are presented.  相似文献   

2.
The mechanical properties of molecular self-assembled monolayers (SAMs) play an important role in understanding the interactions between molecules in the self-assembly, the interactions between molecules and substrate, and thus the formation mechanism of SAMs. Using a high-resolution noncontact atomic force microscope (NC-AFM) combined with a scanning tunneling microscope (STM), we have successfully obtained the sub-molecular resolution of a H(2)Pc self-assembled monolayer grown on a Pb(111) surface. A 2 × 2 superstructure was observed in both AFM and STM topographic images. The lateral critical force of removing a H(2)Pcmolecule from its SAM and moving a single H(2)Pc molecule on Pb(111) were measured. An oscillation of the critical force along the edge of the H(2)Pc SAM with a period of two molecular sites was observed, which can be attributed to the 2 × 2 superstructure. The lateral critical force caused by intermolecular interaction was found to be 25 pN on average and is typically two times larger than the molecule-substrate interaction.  相似文献   

3.
A scanning Hall probe microscope that is capable of observing both topographic and magnetic images simultaneously has been developed by constructing a conducting needle, used for the scanning tunneling microscope (STM) measurements, adjacent to the Hall junction of 0.6 μm square. The needle also enables the Hall probe to approach the sample without contact and to scan just above it with close proximity. Morphologies and local magnetic distributions on the surfaces of magnetic recording media, observed by our microscope, indicates that lateral spatial resolution is better than 1 μm for both STM and magnetic measurements.  相似文献   

4.
Tapping mode atomic force microscopy is used to control the tip-sample distance in near field scanning optical microscopy (NSOM), which gives both topographic and near-field images simultaneously. The evanescent waves are scattered by a vibrating silicon-nitride tip in the proximity of sample surfaces and are detected through a microscope objective. This NSOM allows the observation of opaque samples with reflection illumination. A glass grating of 1-μm pitch and an InP grating of 0.5-μm pitch are observed with a lateral resolution of 100 nm.Presented at 1996 International Workshop on Interferometry (IWI ‘96), August 27-29, Saitama, Japan  相似文献   

5.
Full-field soft X-ray microscopy in combination with X-ray magnetic circular dichroism as contrast mechanism is a powerful technique to image with elemental specificity magnetic nanostructures and multilayered thin films at high lateral resolution down to 15nm by using Fresnel zone plates as X-ray optical elements. Magnetization reversal phenomena on a microscopic level are studied by recording the images in varying external magnetic fields. Local spin dynamics at a time resolution below 100ps can be addressed by engaging a stroboscopic pump-and-probe scheme taking into account the time pattern of synchrotron storage rings. Characteristic features of magnetic soft X-ray microscopy are reviewed and an outlook into future perspectives with regard to increased lateral and temporal resolution is given.  相似文献   

6.
J.M. Kim  T. Ohtani 《Surface science》2004,549(3):273-280
High-resolution single molecular near-field fluorescence images were observed by scanning near-field optical/atomic force microscopy (SNOM/AFM). We modified the SNOM/AFM for both high-resolution fluorescence imaging and high-resolution topographic imaging. The imaged fluorophore, Alexa 532, is prepared with a poly-methyl-methacrylate (PMMA) film coating. A fluorescence resolution of 25 nm was obtained with a simultaneous topographic image of a flat surface. A sample prepared with a lower PMMA concentration exhibited a rough surface in the micro area. The results for the flat surface indicated that the fluorescence resolution is worst in the rough surface sample, that the maximum fluorescence intensities for the individual fluorophore are similar, and that the decay rate is faster. Thus, we concluded that the morphological effect is an important factor in fluorescence image resolution and the apparent lifetimes of the fluorescence molecules.  相似文献   

7.
频谱编码显微镜是用衍射光栅和光谱分析装置来获得显微图像.样品上不同的位置被不同的波长照明,通过对反射光光谱进行解码来得到空间信息.搭建了一个基于超连续光源和自制光谱仪的频谱编码显微成像系统,其横向分辨率为1.72±0.13μm(编码线方向)和1.26±0.08μm(垂直于编码线方向),测得不同横向位置处的轴向分辨率有差异.对离体猪肝组织不同部位进行了成像(可见血管、肝窦内皮细胞和肝细胞);对鸡心组织以10μm深度间隔进行成像,测得不同深度处结构信息不一样.结果表明,采用该频谱编码成像的方法能够进行高分辨的深度成像.  相似文献   

8.
We designed and developed a high-speed atomic force microscope (HSAFM) utilizing a force-feedback scheme for imaging large biological samples. The system collects three simultaneous images: a deflection image, a topographic image, and a force image. We demonstrated that this force-feedback HSAFM is capable of acquiring large topographic images of Escherichia coli biofilms at approximately one frame per second in air. We discuss how the self-actuating cantilever and the piezo tube follow those larger biological topographic features during the HSAFM imaging process.  相似文献   

9.
Near infrared topographic imaging is a novel non-invasive technique to obtain the activated region in the brain cortex. The light propagation in the head is strongly scattered and this causes results in poor spatial resolution and contrast in the topographic images. Adequate modelling of light propagation in the head in order to deduce the volume of tissue interrogated by a source-detector pair for topographic imaging is very important to improve the quality of image of brain activity. In this study, the light propagation in a three-dimensional realistic head model is calculated by the finite difference method. The geometry of the model is generated from axial slices of an MRI scan. The topographic image is obtained from the change in intensity detected by source-detector pairs caused by the brain activity. The images obtained by two types of source-detector arrangement are compared to evaluate the efficiency of source-detector arrangement. The results show that the double-density arrangement improves the quality of the topographic image of the brain activity.  相似文献   

10.
Aperture synthesis can improve image resolution in digital holography by increasing the numerical aperture of the system. In this paper, we show that both the lateral resolution and image field of view can be enhanced at the same time using a more general Fresnel holography setup and hologram stitching. The impact of aperture synthesis on the lateral resolution is investigated both theoretically and experimentally. In the experiment, the synthesis is executed by moving the compact digital holographic system in two directions. Nine holograms are recorded and stitched into one hologram. The reconstruction results show that expanding aperture improves the lateral resolution. The lensless Fresnel holography used in this paper is demonstrated to have the ability to provide a larger numerical aperture and can compress the object spectrum in recording process.  相似文献   

11.
Jin F  Jang JS  Javidi B 《Optics letters》2004,29(12):1345-1347
We present the effects of a finite number of pixels in elemental images on the resolution and the depth of focus in three-dimensional integral imaging (II). We show that the number of pixels in elemental images determines not only the lateral resolution but also the depth resolution. The minimum number of pixels required in each elemental image is calculated to avoid depth-of-focus degradation. We evaluate how II system performance degrades as the number of pixels in each elemental image changes. The product of the depth of focus and the lateral resolution squared is used as the performance metric.  相似文献   

12.
In this paper, we propose an architecture based on camera array with masks to enhance the sensor resolution of remote imaging system. The sensor resolution is enhanced by multiplexing the sensor images of each camera, in which the angular resolution bandwidth is converted using masks to expand the spatial resolution bandwidth. The improvement of the sensor resolution depends on the number of cameras in the array. The theory of improving the sensor resolution is discussed both in Fourier domain and spatial domain. We verify resolution enhancement of the architecture by ray-tracing imaging simulation. A simulation model is built to verify the resolution-enhancing ability of the camera array architecture. From each camera in the array, we get a resolution-limited image. The reconstructed image is synthesized from all the images of the cameras. The post-synthesized image has finer information details compared with the images of each camera. The resolution improvement varies with the object distance. The optimal resolution improvement of the reconstructed image is equal to the total sensor pixels of the camera array.  相似文献   

13.
Freddy Alberto Monroy 《Optik》2010,121(22):2049-2052
Experimental features such as wavelength, camera specifications and reconstruction distance determine the theoretical limit for lateral resolution in digital holography. However, the actual experimental resolution limit is about 50% below such theoretical limit due to the high-contrast speckle noise presented in the reconstructed holograms. Recently, a technique has been introduced to reduce the contrast of speckle noise that is based on the superposition of uncorrelated hologram reconstructions of the same static object [5] (Garcia-Sucerquia et al., 2006). By this approach of reducing the contrast of the speckle noise, it is experimentally shown that an improvement of the order of 50% can be reached when 100 reconstructed images are superimposed.  相似文献   

14.
Scanning near-field optical microscopy (SNOM) yields high-resolution topographic and optical information and constitutes an important new technique for visualizing biological systems. By coupling a spectrograph to a near-field microscope, we have been able to perform microspectroscopic measurements with a spatial resolution greatly exceeding that of the conventional optical microscope. Here we present SNOM images of Escherichia coli bacteria expressing a mutant green fluorescent protein (GFP), an important reporter molecule in cell, developmental, and molecular biology. Near-field emission spectra confirm that the fluorescence detected by SNOM arises from bacterially expressed GFP molecules.  相似文献   

15.
Lateral resolution enhancement with standing evanescent waves   总被引:3,自引:0,他引:3  
Cragg GE  So PT 《Optics letters》2000,25(1):46-48
A high-resolution fluorescence microscopy technique has been developed that achieves a lateral resolution of better than one sixth of the emission wavelength (FWHM). By use of a total-internal-reflection geometry, standing evanescent waves are generated that spatially modulate the excitation of the sample. An enhanced two-dimensional image is formed from a weighted sum of images taken at different phases and directions of the standing wave. The performance of such a system is examined through theoretical calculations of both the point-spread function and the optical transfer function.  相似文献   

16.
There is often substantial noise and blurred details in the images captured by cameras. To solve this problem, we propose a novel image enhancement algorithm combined with an improved lateral inhibition network. Firstly, we built a mathematical model of a lateral inhibition network in conjunction with biological visual perception; this model helped to realize enhanced contrast and improved edge definition in images. Secondly, we proposed that the adaptive lateral inhibition coefficient adhere to an exponential distribution thus making the model more flexible and more universal. Finally, we added median filtering and a compensation measure factor to build the framework with high pass filtering functionality thus eliminating image noise and improving edge contrast, addressing problems with blurred image edges. Our experimental results show that our algorithm is able to eliminate noise and the blurring phenomena, and enhance the details of visible and infrared images.  相似文献   

17.
The nanometer-scale indentation of a crystalline surface produces nanostructures that evolve on a timescale that is inaccessible to existing imaging methods for the vast majority of surfaces. We have been able to observe the dynamic evolution of the freshly cleaved surface of a NaCl(100) crystal after indentation with an atomic force microscope (AFM) in air. Here we present sequential AFM images featuring vertical atomic resolution which show that atomic terrace motion is greatly enhanced by the AFM indentation. Moreover, some of the nanometric features generated by the indentation become reassimilated into the crystalline surface structure of the surroundings of the indentation over a period of time of the order of several minutes.  相似文献   

18.
Yasumatsu N  Watanabe S 《Optics letters》2012,37(13):2706-2708
We demonstrate a method for substantially improving the axial resolution of terahertz time-of-flight measurements by analyzing the time-dependent polarization direction of an elliptically polarized single-cycle terahertz electromagnetic (T-ray) pulse. We show that, at its most sensitive, the technique has an axial resolution of ~λ/1000 (<1 μm) with a subsecond measurement time, and very clear T-ray topographic images are obtained. Such a very high axial resolution of the T-ray topography opens the way for novel industrial and biomedical applications such as fine metalworking and corneal inspection in a safe manner.  相似文献   

19.
In endoscopic diagnosis, there has been a strong requirement to measure the internal surface topography of the rectum or esophagus. Accurate measurement, however, is very difficult, because the object is usually observed from an inclined view. In this paper, we propose a method to overcome this difficulty utilizing sequential stereo-pair images; the relative shape is roughly measured from sequential images taken by one of the change coupled device (CCD) cameras, and the size is determined by stereo-pair matching using the measured shape. A coarse-to-fine approach is also used to improve the resolution of topographic measurement. Through a basic experiment using a monocular CCD endoscope and a polyp phantom, the proposed method is confirmed to improve measurement accuracy in comparison with conventional methods.  相似文献   

20.
The lateral organization of membrane proteins and lipids domains has a direct impact on many cellular processes, but generally these domains are too small to be resolved by diffraction-limited resolution of fluorescence microscopy. Here, we use quantum dot (QD) labeling based on near-field optical imaging, to study the nanoscale organization of hyaluronan receptor CD44 molecules of fixed mesenchymal stem cells (MSCs) in air, with a optical resolution down to 50 nm. The photostability and high luminance of QD evidently improve the signal-to-noise ratio and reproducibility of near-field optical data. Importantly, the blinking-intensity analysis was proposed to identify single QD, providing a calibration to relate intensity to numbers of antibody for the first time. Additionally, the fluorescence-topographic imaging enables us to investigate the topographic location pattern. Our results demonstrate that CD44 molecules on MSCs are enriched into nanosized domain and they predominantly locate on the peak of the membrane protrusions, which may contribute to clarify the underlying mechanism of functions ascribed to these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号