首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Adiabatic and vertical ionization potentials (IPs) and valence electron affinities (EAs) of serinamide in the gas phase have been determined using density functional theory (DFT) B3LYP, B3P86, and B3PW91 methods with the 6‐311++G** and 6‐311G** basis sets, respectively. IPs and EAs of serinamide in solution have been calculated with the B3LYP method using the 6‐311++G** and 6‐311G** basis sets. Eight possible conformers of serinamide and its charged states in the gas phase have been optimized employing the DFT B3LYP method with 6‐311++G** and 6‐311G** basis sets, respectively. All the adiabatic and vertical ionization potentials (AIPs and VIPs) of eight serinamide conformers in our work are positive values, whether in the gas phase or in solutions; the IPs in solutions are smaller than the results in the gas phase and decrease with increased dielectric constants in solutions. This finding indicates that the cationic states in solutions are more stable than those in the gas phase. All EAs of eight serinamide conformers are negative values in the gas phase, indicating that the anionic states are unstable with respect to electron autodetachment, both adiabatically and vertically. In contrast, all other adiabatic electron affinities (AEAs) are negative values in solutions except for 6S in water; 7S in chloroform, acetone, and water; and 8S in acetone and water, and increase with increasing of dielectric constants in solutions. All vertical electron affinities (VEAs) are negative values in solutions; however, no good rule has been found for these values in solutions. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

2.
The ionization potentials (IPs) and electron affinities (EAs) of formamide in the gas phase have been calculated using density functional theory (DFT), ab initio HF and Møller-Plesset perturbational theory (MP) at 6-311++G** basis set. The results indicate that the IPs of formamide obtained with DFT and MP are in agreement with the results obtained from experiment. And B3LYP has been confirmed to be the most accurate method in calculating the AIPs and VIPs of formamide through our work. IPs and EAs of formamide in solution are not known experimentally, therefore IPs and EAs of formamide in chloroform, acetone, and dimethylsulfoxide have been calculated using polarized continuum model (PCM) with B3LYP/6-311++G** level and have been compared with the values in the gas phase. The AIPs and VIPs of formamide have been compared with those of its methylation derivatives. All EAs of methylation derivatives of formamide are bigger than those of formamide conformers in the gas phase with BLYP, B3LYP, and B3P86 methods at 6-311++G** basis set. All these indicate that all anions of methylation derivatives of formamide are more stable than anions of formamide with respect to electron detachment adiabatically and vertically in the gas phase.  相似文献   

3.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

4.
An extensive exploration of the conformational space has been carried out to characterize all possible gas phase structures of leucine. A total of 324 unique trial structures for canonical leucine were generated by considering all possible combinations of single bond rotamers. All trial structures were optimized at the B3LYP/6-311G* level of the DFT method. A total of 77 unique and stationary canonical conformers were found. Further, 15 most stable conformers were reoptimized at B3LYP/6-311++G** level and their respective relative energies, vertical ionization energies, hydrogen bonding patterns, rotational constants and dipole moments were calculated. A single point energy calculations for leucine conformers have also been done at both B3LYP/6-311++G(2df, p) and MP2/6-311++G(2df, p) levels. The good agreement between our estimates of rotational constants for two most stable conformers and available experimental measurements supports the reliability of the B3LYP/6-311++G** level of theory for describing the conformational behavior of leucine molecule. The proton affinity and gas phase basicity were also determined. Using the statistical approach, conformational distributions at various temperatures have also been performed and analyzed. Vibrational spectra were also calculated. It is also observed that zwitterions of leucine are not stable in gas phase.  相似文献   

5.
Systematic and extensive conformational search has been performed to characterize the gas-phase threonine structures. A total of 1296 unique trial structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level of the theory and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 71 conformers were found and their rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies and vertical ionization energies of all the conformers were determined. Single-point energies were also calculated at the MP2/6-311G(2df,p) and B3LYP/6-311G(2df,p) levels. Characteristic H-bonding types were classified and listed for all the conformers. The conformational distributions of gaseous threonine at various temperatures were calculated.  相似文献   

6.
Eleven possible conformers of glycylglycine have been studied by using the BLYP, B3LYP methods of density functional theory and the HF method at the basis set of 6-311++G**. BLYP (using Becke's and Lee-Yang-Parr's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations have been carried out to study the structure and vibrational spectra of glycylglycine. Glycylglycine crystal structure has been determined by X-ray diffraction analysis. The title compound has been crystallizes in the orthorhombic space group C1, with Z=4. And the unit cell parameters are: a=8.1184(12)A, b=9.5542(14)A, c=7.8192(11)A and V=577.95(15)A(3). Molecular conformation calculations have got 11 possible conformers. In these possible conformers, the most stable one has been selected. The BLYP/6-311++G** and scaled HF/6-311++G** frequencies correspond well with available experimental assignments of the normal vibrational modes. Comparison of the observed fundamental vibrational frequencies of glycylglycine and calculated results by density functional B3LYP and Hartree-Fock (HF) methods indicates that B3LYP is superior to the scaled Hartree-Fock (HF) for molecular vibrational issues.  相似文献   

7.
Adiabatic and vertical ionization potentials (IPs) and valence electron affinities (EAs) of alaninamide in gas phase have been determined using density functional theory (BLYP,B3LYP,B3P86) methods with 6-311++G(d,p) basis set,respectively. IPs and EAs of alaninamide in solutions have been calculated at the B3LYP/6-311++G(d,p) level. Five possible conformers of alaninamide and their charged states have been optimized employing density functional theory B3LYP method with 6-311++(d,p) basis set,respectively.  相似文献   

8.
A full structural assignment of the conformers of gaseous tyrosine is presented. A total of 1296 unique trial structures were generated by allowing for all combinations of internal single-bond rotamers and optimized at the B3LYP6-311G* level of theory and then subjected to further optimization at the B3LYP6-311++G** level. A total of 76 conformers are found and their dipole moments, rotational constants, and harmonic frequencies are determined. Accurate relative energies are given at the MP26-311G(2df,p)B3LYP6-311++G** level of theory. Characteristic H-bonding types are classified and listed for all the conformers. The four most stable conformers display an intramolecular H bond, COOH...NH(2), and an additional H-bonding interaction between the amino group and pi electron of the aromatic ring. The results further confirm that the global minimum conformations of the aromatic amino acids have the same H-bonding type. Combined with statistical mechanics principles, conformational distributions at various temperatures are computed and the temperatures with which the theoretical results match that of experiments are indicated.  相似文献   

9.
气相中O3与HSO自由基之间的相互作用及其反应在大气化学中非常重要.在DFT-B3LYP/6-311++G**和MP2/6-311++G**水平上求得O3+HSO复合物势能面上的稳定构型,B3LYP方法得到了三种构型(复合物Ⅰ,Ⅱ和Ⅲ),而MP2方法只能得到一种构犁(复合物Ⅱ).在复合物Ⅰ和Ⅲ中,HSO单元中的1H原子作为质子供体.与O3分子中的端基O原子作为质子受体相互作用,形成红移氢键复合物;而在复合物Ⅱ中,虽与复合物Ⅰ和Ⅲ中具有相间的质子供体和质子受体,却形成了蓝移氢键复合物.B3LYP/6-311++G**水平上计算的单体间相互作用能的计算考虑了基组重甍误差(BSSE)和零点振动能(ZPVE)校正,其值在-3.37到-4.55 kJ·mol-1之间.采用自然键轨道理论(NBO)对单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了三种复合物中氢键的电子密度拓扑性质.  相似文献   

10.
袁焜  刘艳芝  朱元成  张继 《物理化学学报》2008,24(11):2065-2070
气相中O3与HSO自由基之间的相互作用及其反应在大气化学中非常重要. 在DFT-B3LYP/6-311++G**和MP2/6-311++G**水平上求得O3+HSO复合物势能面上的稳定构型, B3LYP方法得到了三种构型(复合物I, II和III), 而MP2方法只能得到一种构型(复合物II). 在复合物I和III中, HSO单元中的1H原子作为质子供体, 与O3分子中的端基O原子作为质子受体相互作用, 形成红移氢键复合物; 而在复合物II中, 虽与复合物I和III中具有相同的质子供体和质子受体, 却形成了蓝移氢键复合物. B3LYP/6-311++G**水平上计算的单体间相互作用能的计算考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正, 其值在-3.37到-4.55 kJ·mol-1之间. 采用自然键轨道理论(NBO)对单体间相互作用的本质进行了考查, 并通过分子中原子理论(AIM)分析了三种复合物中氢键的电子密度拓扑性质.  相似文献   

11.
去氢抗坏血酸分子振动光谱的理论研究   总被引:1,自引:0,他引:1  
采用RHF, MP2, DFT(B3LYP)方法, 以6-311++G**为基组研究了去氢抗坏血酸分子(DHA)的平衡几何构型和振动光谱. 计算结果表明, 采用RHF, B3LYP以及MP2 方法优化得到的几何结构以及频率值是一致的. 采用B3LYP/6-311++G**计算了DHA分子平衡构型下的谐振动力场﹑振动频率和振动强度. 使用Wilson的GF矩阵方法对DHA分子进行了简正坐标分析, 依据所得的势能分布对DHA分子的振动基频进行了合理的理论归属.  相似文献   

12.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
A density functional theory (DFT) study-based method B3LYP/6-311++G** was carried out to investigate the methyl groups substitution effect on the structure and the strength of intramolecular hydrogen bonding in naphthazarin (NZ) (5,8-dihydroxy-1,4-naphthoquinone). The full geometry optimization of molecular structures, the difference between the energies of hydrogen-bonded and non-hydrogen-bonded rotamers, and the proton chemical shift of the hydroxyl groups in NZ and its methyl substituents obtained at the B3LYP/6-311++G** level. The vibrational frequencies of all samples and their deuterated analogues were calculated at the same theoretical level. The 1H chemical shifts for NZ and its methyl substituents were computed at the B3LYP/6-311++G** level using the gauge-including atomic orbital method. Furthermore, in order to investigate the changes in bond order, electron density, electron delocalization, and steric effects caused by methyl substituents, natural bond orbital analysis were carried out at the B3LYP/6-311++G** level. After comparing these effective parameters in methyl substituents with those of their parent, NZ, we concluded that, in general, intramolecular hydrogen bonding strength increases by substituting methyl groups in the different positions of NZ.  相似文献   

14.
An extensive quantum mechanical study of a water dimer suggests that the introduction of a diffuse function into the basis set, which significantly reduces the basis set superposition error (BSSE) in the hydrogen bonding energy calculation, is the key to better calculations of the potential energy surfaces of carbohydrates. This article examines the potential energy surfaces of selected d -aldo- and d -ketohexoses (a total of 82 conformers) by quantum mechanics (QM) and molecular mechanics (MM) methods. In contrast to the results with a smaller basis set (B3LYP/6-31G** 5d), we found at the higher level calculation (B3LYP/6-311++G(2d,2p)//B3LYP/6-31G** 5d) that, in most cases, the furanose forms are less stable than the pyranose forms. These discrepancies are mainly due to the fact that intramolecular hydrogen bonding energies are overestimated in the lower level calculations. The higher level QM calculations of the potential energy surfaces of d -aldo- and d -ketohexoses now are more comparable to the MM3 results. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1593–1603, 1999  相似文献   

15.
Six fully optimized structures of the aza-calix[2]arene[2]-triazines/RDX supramo-lecular complexes have been obtained at the DFT-B3LYP/6-311++G** level,and the corresponding intermolecular interactions have been investigated using the B3LYP,mPWPW91 and MP2 methods at the 6-311++G** level,respectively.The natural bond orbital(NBO) and atoms in molecules(AIM) analyses have been performed to reveal the origin of interactions.To our interest,the result indicates that the strongest interaction is up to -22.34 kJ/mol after basis set superposition error(BSSE) and zero point energy(ZPE) correction at the MP2/6-311++G** level.Furthermore,the intermolecular interactions between aza-calix[2]arene[2]-triazines with the substituted amidos and RDX are stronger than those of other complexes.Thus,the complexes with amidos can be used as the candidates to increase the stability of explosive and eliminate the explosive wastewater.  相似文献   

16.
High level correlated quantum chemical calculations, using MP2 and local MP2 theory, have been performed for conformations of the disaccharide, beta-maltose, and the trisaccharide, 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranose. For beta-maltose, MP2 and local MP2 calculations using the 6-311++G** basis set are in good agreement, predicting a global minimum gas-phase conformation with a counterclockwise hydrogen bond network and the experimentally-observed intersaccharide hydrogen bonding arrangement. For conformations of 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranose, MP2/6-311++G**, and local MP2/6-311++G** calculations do not provide a consensus prediction of relative energetics, with the MP2 method finding large differences in stability between extended and folded trisaccharide conformations. Local MP2 calculations, less susceptible to intramolecular basis set superposition errors, predict a narrower range of trisaccharide energetics, in line with estimates from Hartree-Fock theory and B3LYP and BP86 density functionals. All levels of theory predict compact, highly hydrogen-bonded conformations as lowest in energy on the in vacuo potential energy surface of the trisaccharide. These high level, correlated local MP2/6-311++G** calculations of di- and trisaccharide energetics constitute potential reference data in the development and testing of improved empirical and semiempirical potentials for modeling of carbohydrates in the condensed phase.  相似文献   

17.
In the current study, we present an intramolecular HB, molecular structure, π-electrons delocalization and vibrational frequencies analysis of 25 possible conformers of 1-(thionitrosomethylene) hydrazine by means of DFT (B3LYP), MP2 methods in conjunction with the 6-311++G** and augmented correlation-consistent polarized-valence triple-zeta basis sets and G2MP2 theoretical level. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen-bonding was considered using the Tomasi’s polarized continuum model. Statistical analyses of quantitative definitions of aromaticity, nucleus independent chemical shift, harmonic oscillator model of aromaticity, aromatic fluctuation index, and the π-electron delocalization parameter (Q) as a geometrical indicator of a local aromaticity, evaluated for this conformers. Further verification of the obtained transition state structures were implemented via intrinsic reaction coordinate (IRC) analysis. Calculations of the 1H NMR chemical shift at GIAO/B3LYP/6-311++G** levels of theory are also presented. The calculated highest occupied molecular orbital (MO) and lowest unoccupied MO energies show that charge transfer occur within the molecule. Hydrogen-bond energies for H-bonded conformers were obtained from Espinosa method and the natural bond orbital theory and the atoms in molecules theory were also applied to get a more precise insight into the nature of such H-bond interactions.  相似文献   

18.
B3LYP/6-311++G** and MP2/6-311++G** calculations were used to analyze the interaction between hypochlorous acid (HOCl) and formyl chloride (HCOCl). The results showed that there were four equilibrium geometries (S1, S2, S3, and S4) optimized at B3LYP/6-311++G** level, and all the equilibrium geometries were confirmed to be in stable states by analytical frequency calculations. Complexes S1 and S3 use the 5H atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift hydrogen bond systems. However, the blue-shifted hydrogen bond (2C-3H···6O) coexists with 4Cl···5O interaction in structures S2. As for S4, it uses the 7Cl atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift halogen bond system. Interaction energies between monomers in the four complexes corrected with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) lie in the range from −5.05 to −14.76 kJ·mol−1 at MP2/6-311++G** level. The natural bond orbital (NBO) and atoms in molecules (AIM) theories have also been applied to explain the structures and the properties of the complexes.  相似文献   

19.
The conformers of cycloheptane through cyclodecane have been examined at the B3LYP/6-311+G* and MP2/6-311+G* theoretical levels, with some additional calculations at the CCD/6-311+G* and CCSD(T)/6-311++G** levels. With cyclooctane, B3LYP predicts that the boat-chair and crown conformers have similar energies, whereas MP2 and CCSD(T) predict that the crown conformer is 2 kcal/mol higher in energy. The latter is in agreement with the electron diffraction data. With cyclononane, B3LYP predicts that two of the higher-energy conformers found in molecular mechanics calculations should convert to one of the lower-energy conformers. However, MP2/6-311+G* optimizations find them to be true minima on the potential energy surface. B3LYP systematically predicts larger C-C-C bond angles for these compounds than either MP2 or CCD. The results of molecular mechanics MM4 calculations are generally in good agreement with those obtained using MP2.  相似文献   

20.
We observed the microwave spectrum of ethyl isovalerate by molecular beam Fourier transform microwave spectroscopy. The rotational and centrifugal distortion constants of the most abundant conformer were determined. Its structure was investigated by comparison of the experimental rotational constants with those obtained by ab initio methods. In a first step, the rotational constants of various conformers were calculated at the MP2/6-311++G** level of theory. Surprisingly, no agreement with the experimental results was found. Therefore, we concluded that in the case of ethyl isovalerate more advanced quantum chemical methods are required to obtain a reliable molecular geometry. Ab initio calculations carried out at MP3/6-311++G**, MP4/6-311++G**, and CCSD/6-311++G** levels and also density functional theory calculations using the B3LYP/6-311++G** method gave similar results for the rotational constants, but they were clearly distinct from those obtained at the MP2/6-311++G** level. With use of these more advanced methods, the rotational constants of the lowest energy conformer were in good agreement with those obtained from the microwave spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号