首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用静电纺丝法获得的多孔Fe2O3纳米棒与氮掺杂还原氧化石墨烯(N?RGO)的复合材料作为载体,通过光还原法成功制备清洁、高活性的Pt/Fe2O3/N?RGO催化剂,并进一步研究其中的光还原反应机理和催化剂的抗烧结性能。研究结果表明,在可见光照射下,Fe2O3对光的强吸收作用促使光生电子和空穴的产生,N?RGO有效延长光生载流子的寿命,使得电子从O2-转移到Fe3+。Fe2O3/N?RGO中部分还原的Fe2+具有较强的还原能力,可使PtCl62-在Fe2O3表面还原并迅速成核,生长为粒径约2.13 nm的Pt纳米颗粒。此外,甲醇作为空穴清除剂可以快速有效地消耗掉扩散到载体表面的光生空穴,使导带中积累的电子与PtCl62-发生还原反应,从而提高Pt纳米颗粒的光还原速率。电纺Fe2O3纳米棒独特的粗糙表面为Pt纳米颗粒异相成核提供了大量活性位点。富含点缺陷的N?RGO片层能缩短Fe2O3的光生载流子扩散路径,提高光沉积的效率;同时,其特征褶皱结构可以作为物理屏障,防止Pt纳米颗粒聚集。得益于金属与载体间的强相互作用,在500℃高温老化后,Pt纳米颗粒仍能维持较小的尺寸(2.67 nm),表现出优良的抗烧结性能。在对硝基苯酚加氢反应中,Pt/Fe2O3/N?RGO在400℃老化后仍具有高达22.2 L·g-1·s-1的反应速率常数,约为老化前的1.6倍。  相似文献   

2.
采用两步溶液法在陶瓷管上原位生长了ZnO纳米棒阵列,然后以ZnO纳米棒为载体,通过水热法在其表面负载α-Fe2O3纳米粒子,生成异质α-Fe2O3/ZnO复合纳米材料。 α-Fe2O3/ZnO纳米棒直径30~80 nm,长1 μm左右,交叉排列形成纳米棒阵列,α-Fe2O3纳米粒子粒径约10 nm,均匀分布在ZnO纳米棒表面。 将纯ZnO和α-Fe2O3/ZnO纳米棒阵列制成气敏元件,测试并对比了2种气敏元件的气敏性能,揭示其气敏机理。 结果表明:α-Fe2O3纳米粒子的复合显著提高了ZnO纳米棒阵列对乙醇气体的灵敏度和选择性,在工作温度370 ℃时,对100 μL/L乙醇气体的响应值为85.4,是同条件下ZnO器件对乙醇响应值(9.4)的9.1倍,响应时间7 s,最低检出限为0.01 μL/L。 相关研究可以应用于痕量乙醇的快速、高灵敏度和高选择性检测。  相似文献   

3.
在光电化学(PEC)中,利用半导体纳米材料分解水产生氧气和氢气成为解决能源和环境危机的有效途径,而设计具有较高的光子捕获效率和电荷分离率的低成本光电极是研究的重点.近年来,已有许多半导体材料(例如Zn O, Fe2O3, WO3,Cu2O, CuInS2等)被用做光电极参与光电催化分解水.其中, TiO2作为一种n型半导体,由于其具有适当的导带(CB)和价带(VB)位置、良好的耐光腐蚀性、无毒性和出色的稳定性而引起人们的关注.然而,光响应范围窄,光生载流子复合率高等问题限制了TiO2光电极在PEC水分解中的应用.因此,选用合适的窄禁带半导体和助催化剂进行复合修饰能够有效地扩大光响应范围,促进载流子的分离和转移,从而提升电极的光电催化性能.本文利用具有表面等离子体共振(SPR)效应的Al对TiO2/Cu2O核/壳异质结进行改性,制备了TiO2/Cu2...  相似文献   

4.
过量的CO2排放引起了一系列的环境问题。利用光催化技术将CO2转为高附加值化合物不仅可以减小碳排放也可以缓解能源短缺。其中高效光催化剂开发是光催化技术的关键之一。纳米结构调控和异质结构筑是两种有效地提升材料光催化CO2转化活性的方法。特别是,由还原型和氧化型催化剂组成的新型S型传导异质结,其在两组分之间不同的费米能级作用下,实现高效的光生载流子的分离。S型的电荷传导不仅可以有效的抑制光生载流子的复合,同时,聚集了大量具有较强催化氧化和还原能力的光生空穴与电子。Cu2O和BiOI材料作为典型的还原型和氧化型催化剂,因其都具有良好的可见光吸收能力和适合的能带结构,可以应用于还原CO2和氧化H2O的耦合反应。我们利用电沉积的方法,在FTO导电玻璃基底表面构筑了多面体Cu2O/片状BiOI的复合材料。我们利用粉末X射线衍射(XRD),X射线光电子能谱(XPS),紫外线光电子能谱(UPS),场发射扫描电镜(SEM)和场发射投射电镜(TEM)技术...  相似文献   

5.
制备了TiO2纳米颗粒和ZnO纳米棒混合的多孔薄膜电极, 利用瞬态光电压技术研究了染料敏化TiO2/ZnO薄膜中光生载流子的传输特性. 实验结果表明, ZnO纳米棒增加了薄膜中自由电子扩散速率, 减小了复合几率, 改善了能量转换效率.  相似文献   

6.
光电化学(PEC)分解水制氢,已成为将太阳能转化为绿色可持续氢能极具潜力的途径之一.目前,单斜相钒酸铋(BiVO4)因其合适的带隙及能带位置、无毒且含量丰富等优点,被认为是理想的光阳极材料.然而, BiVO4较低的载流子迁移率(4×10-2 cm2V-1s-1和较短的空穴扩散长度(<100 nm),导致BiVO4光阳极电子-空穴复合较严重,极大地限制了其性能.为克服上述缺陷,除减小BiVO4纳米颗粒的粒径以匹配其较短的空穴扩散长度,使空穴能有效转移到其表面参与水氧化反应;或在其表面沉积一层薄的氧气释放反应助催化剂(OEC)层以增强水氧化反应动力学以外,还应关注如何进一步有效提升BiVO4电荷分离效率.因此,在BiVO4和氟掺杂的氧化锡(FTO)电极界面之间插入另一种半导体材料构筑异质结以促进BiVO4电荷分离,进一步提升BiVO4<...  相似文献   

7.
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在1.23 V(vs RHE)下的光电流密度为3.33 mA·cm-2,较纯BiVO4提升了2倍(1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。  相似文献   

8.
在温和条件下将CH4转化为液态含氧化合物,对解决能源和环境问题,实现可持续发展具有重要意义.光催化CH4转化技术可利用光能驱动载流子分离,实现温和条件下CH4直接转化.然而,该过程面临着活性低和选择性差的瓶颈问题.WO3作为常见的光催化剂之一,具有热稳定好、可见光响应性能好和价带空穴氧化能力强等特性,但存在光生电荷容易复合的问题.助催化剂能够发挥促进光生电荷分离和加速表面催化反应的双重作用,有助于局域电子密度的重新分布,从而促进光生电荷的分离和转移.然而,单一助催化剂促进光生电荷分离具有一定局限性,为了进一步加强光生电荷的分离和转移,引入氧空位(OVs)是个很好的选择, OVs不仅可通过插入杂质能级增强光吸收和促进电荷分离,而且可以促进小分子吸附和活化,进而加速表面反应动力学.本文采用双活性位点Pd纳米颗粒和OVs改性的WO3为催化剂,实现温和条件下CH4转化为液体含氧化合物.参照文献(J. Am. Chem. Soc., 2017, 139, 4486-...  相似文献   

9.
近年来,卤氧铋(BiOX,X=Cl,Br,I)作为多功能半导体光催化材料,因其具有独特的层状结构和电子结构,吸引了广泛关注.然而,相对低的导带(CB)和高的价带(VB)位置导致其氧化还原能力弱,从而限制了其实际应用.研究表明,通过富铋策略调控BiOX中元素化学计量比,可以实现对其能带结构的可控调控.尽管富铋半导体材料被视为有效的可见光光催化剂的候选材料之一,但是单一组分的富铋光催化剂不利于光生载流子的分离和迁移.具有匹配能带结构的富铋基复合光催化剂的构建已被证实可以加速光生电子-空穴对的分离和迁移.与传统的Ⅱ型异质结构相比,S型异质结既可以有效地分离光生载流子,又可以增强其氧化还原能力.如果双富铋基半导体之间能形成S型异质结,不仅可以拓展可见光响应,而且还可以增强光生电荷的氧化还原能力.基于Bi4O5I2/Bi4O5Br2的匹配能带,制备具有强氧化还原能力的S型Bi4O5I2/Bi4O5Br2异质结是可行的.除了电子结构外,表面缺陷的引入也对改善光催化性能起到了重要作用.氧空位(OVs)作为一种典型的缺陷,可以捕获电子来抑制光诱导载流子的复合,并加速这些捕获载流子向吸附剂的转移.此外,它们还可以充当有机污染物和分子氧的吸附位点,促进吸附和降解效率.目前,光催化材料中OVs的形成通常需要复杂、苛刻的条件,如高温、高压、惰性或还原气氛处理等,因此寻找简便有效的方法生成OVs仍然具有挑战性.此外,在无惰性或还原气氛下对有机前驱体进行热处理被认为是形成OVs的有效方法.鉴于此,本文通过低温煅烧二维纳米片有机前驱体BiOAc0.6Br0.2I0.2(Ac-=CH3COO-)固溶体,成功合成了表面富有氧空位的一维纳米棒状的S型Bi4O5I2/Bi4O5Br2异质结(Bi4O5I2/Bi4O5Br2-OV).X射线衍射、高分辨率透射电子显微镜电子顺磁共振以及X射线光电子能谱分析(XPS)等结果均证实了表面氧空位的存在.同时,根据吸收光谱图和肖特基曲线计算出Bi4O5I2和Bi4O5Br2的能带结构,而且通过XPS价带谱进一步证实了所计算的价带的可靠性.根据捕获剂实验、氯化硝基四氮唑蓝(NBT)转移以及对苯二甲酸荧光均证实了h+、·OH和·O2-是参与光催化降解的主要活性物种.再结合上述能带结构以及活性物种的类型推断出光生载流子的迁移方式将遵循S型机制,而不是传统的II型异质结.而且,通过光电流、阻抗和稳态荧光均证实了表面OVs和S型异质结的协同效应,有利于提高Bi4O5I2/Bi4O5Br2-OV的光生电子空穴对的分离效率,并延长其寿命,从而有效地提高其光催化性能.在可见光照射下,OVs和S型异质结的协同效应赋予Bi4O5I2/Bi4O5Br2-OV显著的可见光光催化性能,对抗生素四环素和染料罗丹明B的去除率分别高达90.2%和97.0%,均高于Bi4O5I2(56.8%和71.8%)、Bi4O5Br2(47.4%和68.4%)、固溶体BiOAc0.6Br0.2I0.2(67.0%和84.0%)以及表面具有低氧空位浓度的Bi4O5I2/Bi4O5Br2-P(30.6%和40.4%).此外,在实际废水或电解质存在下,S型Bi4O5I2/Bi4O5Br2-OV异质结仍呈现出优异的光催化性能.本文不仅为OVs修饰的富铋基异质结的设计提供了有效策略,也为界面载流子的分离和迁移提供了切实可行的途径.  相似文献   

10.
基于浸渍法制备了不同Fe含量的nFe(Ⅲ)Ox/ZnO光催化剂,并对所得样品进行了XRD、N2吸附-脱附、TEM、XPS、UV-vis以及PL表征。结果发现,通过改变浸渍液中Fe物种的浓度,能够实现最终样品中Fe含量的调控,在实验涉及的范围内,Fe的负载没有造成ZnO载体在晶相、形貌和孔道结构等方面的显著变化,但却改变了催化剂表面的电子状态,从而引入了更多的O空位。此外,Fe的修饰增加了光生载流子的分离效率,显著提升了样品的CH4光催化性能。通过对溶剂体积,H2O2浓度以及反应时间等参数的优化,0.1Fe(Ⅲ)Ox/ZnO样品表现出了最佳的性能,其液相氧化产物(CH3OH、CH3OOH、HCHO)的产率和选择性分别达到了5443μmol/(gcat·h)和99%。基于自由基捕获实验,发现H2O2在光生载流子的作用下形成的·O2-  相似文献   

11.
采用一步水热后在氮气中进行热处理的方法制备了Ti和乳酸共改性的纳米花状α-Fe2O3光阳极。对样品分别进行了X射线衍射、扫描电镜、X射线光电子能谱、紫外-可见吸收光谱和光电化学性能测试。与乳酸改性的纳米片状α-Fe2O3光阳极相比,最优的Ti与乳酸共改性样品0.075LA-Fe2O3-0.75Ti光阳极的光电流密度从0.55mA·cm-2提高到1.39mA·cm-2。Ti改性明显减少了0.075LA-Fe2O3膜的表面态,增加了表面载流子注入效率;同时Ti的掺入也增加了电极体内载流子浓度,增强了体内载流子的传输效率。  相似文献   

12.
工业化固氮合成氨主要采用Haber-Bosch法.然而,该工艺条件苛刻,需要氮气与氢气在高温高压和使用催化剂的条件下反应,耗费大量能源,同时产生温室气体.与Haber-Bosch法不同,光催化固氮不需要使用氢气,而是利用清洁的太阳能和水直接提供固氮反应所需的还原电子和质子,反应耗能低且绿色无污染,是一种理想的固氮方法.然而,目前光催化固氮合成氨受限于光催化剂载流子分离效率低、氮气吸附和活化难,总体固氮效率仍然很低.大量研究证明,构建梯型异质结是一种改善光催化活性的有效手段,这是因为梯型异质结体系不仅有效分离光生载流子,而且保留了光生空穴和电子的强氧化还原能力.另外,表面缺陷不仅可以充当吸附位点,有效调控表面N2分子的吸附特性,还可以起到活化N2分子的作用.本文设计了富含空位的In2O3/ZnIn2S4梯型异质结,系统考察了复合体系中组分配比对晶型结构、微结构和光学吸收等的影响,并通过XPS谱研究了In2O3和ZnIn2S4之间存在强的相互作用,这为光生载流子的高效分离奠定了基础.同时,结合XPS、Raman和EPR测试揭示了材料中表面空位的成功构筑.在此基础上,深入研究了In2O3/ZnIn2S4梯型异质结在室温常压下光催化固氮合成氨的活性.研究结果表明,所有的梯型异质结均展现出明显的光催化固氮活性,其中50 wt%In2O3/ZnIn2S4梯型体系具有最高的光催化固氮活性,自然光照射2 h产生的氨气浓度达到18.1±0.77 mg·L-1,分别是In2O3和ZnIn2S4的21.0和2.72倍.并且该复合体系具有较高的光催化稳定性,在连续循环使用6次时,产生氨气浓度仍然可达到16.3±0.86 mg·L-1.荧光光谱测试、光电化学测试和表面光电压测试证明了电荷的有效分离和转移.综上,构建In2O3/ZnIn2S4梯型体系后,所制备的In2O3/ZnIn2S4活性得到增强,这主要归因于空位对氮气的吸附和活化作用以及梯型异质结中载流子的高效分离机制.另外,研究表明·CO2-物种是光催化固氮合成氨的主要活性物种.  相似文献   

13.
光催化产生太阳燃料因其低成本和零碳排放而成为解决能源危机的研究热点,但光激发载流子对的快速体相复合是需要解决的根本问题.本文在钛酸锶(SrTiO3)纳米纤维上嵌入磷化钴(CoP)和碳化钼(Mo2C)构筑了双助催化剂体系.与纯SrTiO3纳米纤维和二元样品相比,双助催化剂体系显著提高了析氢和二氧化碳还原性能.双助催化剂体系有利于有效促进空间电荷分离并提高光催化性能.此外,SrTiO3与助催化剂之间形成肖特基结,使光激发电子从SrTiO3快速转移到助催化剂,实现了光激发电子的有效分离并延长了光激发电子寿命.通过原位辐照X射线光电子能谱测试(ISI-XPS)确定了SrTiO3和助催化剂之间的电子转移路线,根据紫外-可见漫反射光谱(UV-VisDRS)和紫外光电子能谱(UPS)提出了SrTiO3和助催化剂的能带结构.结果表明,双助催化剂促进了电荷分离并增强了光催化性能.扫描电镜、透射电镜、高分辨透射电镜及其对应的元素分布结果表明,成功构筑了双助催化剂体系,且助催化剂的引入未影响SrTiO3纳米纤维的结构.SrTiO3纯样品表现出较低的光催化产氢活性,引入CoP后产氢性能得到提升并在CoP负载量为6%时达到最高.电化学测试、光致发光测试和瞬态光电压测试表明,引入CoP后的复合样品电化学性能得到提升,表现出更及时的电荷分离、更低的起始电位、更低的载流子复合率以及更长的载流子寿命.进一步在SrTiO3纳米纤维上嵌入CoP和Mo2C,构筑双助催化剂体系,其光催化产氢活性显著提升.同时,得益于SrTiO3独特的能带位置,该双催化剂体系也表现出良好的二氧化碳还原性能.采用ISI-XPS,UPS,UV-VisDRS等研究了双助催化剂的催化机理以及电子转移路径.UPS和UV-VisDRS结果表明,SrTiO3具有较高的功函数,CoP的功函数较低,Mo2C的功函数位于SrTiO3和CoP之间,因此电子倾向于从SrTiO3的导带流向Mo2C再流向CoP,同时形成肖特基势垒使得电子难以流回SrTiO3,从而实现载流子的及时分离以及延长电子寿命.此外,ISI-XPS的结合能大小变化表明,电子是从SrTiO3流到Mo2C再流向CoP.综上,本文制备了双助催化剂修饰的SrTiO3纳米纤维,证明了CoP和Mo2C在改性宽带隙半导体中的作用,并证实了SrTiO3和助催化剂之间光激发载流子的有效空间分离,探索了光激发电子在双助催化剂体系间的流向,为后续研究提供了理论依据和探索思路.  相似文献   

14.
采用两步水热法在泡沫镍基底上合成了具有纳米棒形貌的Co3O4@MnOx整体式催化剂,通过X射线衍射、X射线能谱分析、氢气-程序升温还原、X射线光电子能谱、拉曼光谱和碳烟-程序升温还原等手段对催化剂进行表征,在微型固定床反应器上评价了其催化碳烟燃烧性能,通过等温动力学实验探究了催化剂的本征活性。结果表明,Co3O4@MnOx催化剂呈现了以Co3O4为核、以MnOx为壳的核壳结构。与催化剂Co-NW相比,Co3O4@MnOx催化剂中Co3O4与MnOx之间的相互作用使其表面产生了更多高价物种Mn4+和Mn3+以及更多的表面氧空位,其氧化还原性能提高,催化剂的活性氧物种数量增加了两倍,催化性能得到改善,在NO存在的反应气氛中...  相似文献   

15.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

16.
采用溶胶-凝胶法制备一系列不同Cu/V比例的Cu-V-O催化剂,利用XRD、BET、H2-TPR等手段对催化剂进行了表征,并考察其催化燃烧甲苯的活性和抗硫性。结果表明,适量的Cu掺杂会提高催化剂比表面积,而且Cu-V可以形成Cu3V2O8晶型结构,使V2O5晶格氧活动增加,提高催化剂氧化-还原能力。其中,Cu0.15V0.85催化剂表现出最佳的活性和抗硫性;通过TiO2负载可以进一步提高催化剂对甲苯的催化燃烧活性和抗硫性。  相似文献   

17.
分别在空气和氮气中对水热制备的薄膜进行热处理获得了纳米棒状α-Fe2O3光阳极。对样品分别进行了X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收光谱和光电化学性能测试。与空气热处理获得的α-Fe2O3Air光阳极相比,氮气气氛热处理获得的α-Fe2O3光阳极正面光照电流密度显著提升达到0.42mA·cm-2。正面光照下,α-Fe2O3N2光阳极的体内电荷分离效率ηbulk和表面电荷注入效率ηsurface都有较大增加,说明N2热处理明显增加了α-Fe2O3膜的载流子浓度,增强了体内载流子的传输和表面载流子注入效率。  相似文献   

18.
利用热分解法制备了结构明确的负载型纳米晶催化剂。在纳米晶成核和生长过程中加入一维Zn O纳米棒作为晶种,调控不同组分的纳米晶在Zn O纳米棒表面均匀生长,从而获得了结构明确的Mn O/Zn O、Co3O4/Zn O、Co3Mn1/Zn O催化剂。透射电子显微镜(TEM)与X射线粉末衍射(XRD)结果显示,不同组分纳米颗粒都均匀分散在Zn O纳米棒表面。相对于Mn O/Zn O和Co3O4/Zn O催化剂,Co3Mn1/Zn O催化剂在CO氧化反应中具有最佳的催化性能。在200 L·g-1cat·h-1的气时空速下,Co3Mn1/Zn O催化剂起活温度为50℃,其T100(CO转化率达到100%时的温度)为200℃;利用X射线光电子能谱(XPS)对不同催化剂进行了分析,结果显示,Co<...  相似文献   

19.
CO2的过量排放造成了全球生态系统的失衡,如温室效应、海洋酸化和极端天气频发等.CO2作为一种储量丰富且可循环利用的碳一资源,利用光催化技术将其催化转化为包括一氧化碳和甲烷在内的碳氢燃料,为上述问题提供了一个很有前景的解决方案.纳米片作为典型的二维材料,其厚度一般低至100 nm.此外,二维材料具有较大的比表面积、可调谐的端基官能团、出色的光学性能以及较好的导电性和柔韧性,在光催化领域受到了广泛关注.在半导体材料中,钛酸镧(La2Ti2O7)具有优良的氧化还原能力和良好的稳定性和耐久性,但与其他半导体类似,La2Ti2O7的宽带隙性质决定了其只能利用波长较短的光,这极大地限制了其对太阳光的利用.为了增强光吸收能力,降低光生载流子的复合,本文通过溶剂热法在La2Ti2O7纳米片上负载薄层Ti3C2 MXen...  相似文献   

20.
采用共沉淀法制备了Co3V2O8催化剂,并对催化剂进行了BET、XRD、H2-TPR、XPS、和 TEM等技术表征,研究了其丙烷氧化脱氢 (ODH) 制丙烯反应的催化性能。H2-TPR和XPS实验结果表明,Co3V2O8催化剂中晶格氧可以较容易转换成可动氧物种(即未完全还原氧物种),使催化剂内各种价态的钒之间易于进行氧化还原反应并形成氧缺位,催化剂的表面含有较多未充分还原氧物种O-和V4+ 物种。催化活性结果显示,在425℃和475℃,丙烯选择性分别为49.45%和33.74%,表现了较好的催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号