首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh–Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results.  相似文献   

2.
This work is a tutorial on the different methods to control chaotic behaviour of the coupled dynamos system. Feedback and nonfeedback control techniques are proposed to suppress chaos to unstable equilibrium or unstable periodic solution. The stabilization of unstable fixed point of the chaotic behaviours is achieved also by bounded feedback method. Stability of the controlled systems are studied by Routh–Hurwitz criterion. Nonfeedback method and a derived method based on the delay feedback control are used to control chaos to periodic orbits. Numerical simulation results are included to show the control process of the different methods.  相似文献   

3.
In this paper, optimal approaches for controlling chaos is studied. The unstable periodic orbits (UPOs) of chaotic system are selected as desired trajectories, which the optimal control strategy should keep the system states on it. Classical gradient-based optimal control methods as well as modern optimization algorithm Particle Swarm Optimization (PSO) are utilized to force the chaotic system to follow the desired UPOs. For better performance, gradient-based is applied in multi-intervals and the results are promising. The Duffing system is selected for examining the proposed approaches. Multi-interval gradient-based approach can put the states on UPOs very fast and keep tracking UPOs with negligible control effort. The maximum control in PSO method is also low. However, due to its inherent random behavior, its control signal is oscillatory.  相似文献   

4.
A study of the dynamical behavior of a two-cell DC–DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.  相似文献   

5.
The bifurcations of the chaotic attractor in a Hodgkin–Huxley (H–H) model under stimulation of periodic signal is presented in this work, where the frequency of signal is taken as the controlling parameter. The chaotic behavior is realized over a wide range of frequency and is visualized by using interspike intervals (ISIs). Many kinds of abrupt undergoing changes of the ISIs are observed in different frequency regions, such as boundary crisis, interior crisis and merging crisis displaying alternately along with the changes of external signal frequency. And there are logistic-like bifurcation behaviors, e.g., periodic windows and fractal structures in ISIs dynamics. The saddle-node bifurcations resulting in collapses of chaos to period-6 orbit in dynamics of ISIs are identified.  相似文献   

6.
In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincaré maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincaré sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.  相似文献   

7.
This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.  相似文献   

8.
In this paper a nonlinear delayed feedback control is proposed to control chaos in an Atomic Force Microscope (AFM) system. The chaotic behavior of the system is suppressed by stabilizing one of its first-order Unstable Periodic Orbits (UPOs). At first, it is assumed that the system parameters are known, and a nonlinear delayed feedback control is designed to stabilize the UPO of the system. Then, in the presence of model parameter uncertainties, the proposed delayed feedback control law is modified via sliding mode scheme. The effectiveness of the presented methods is numerically investigated by stabilizing the unstable first-order periodic orbit of the AFM system. Simulation results show the high performance of the methods for chaos elimination in AFM systems.  相似文献   

9.
The physical pendulum equation with suspension axis vibrations is investigated. By using Melnikov's method, we prove the conditions for the existence of chaos under periodic perturbations. By using second-order averaging method and Melinikov's method, we give the conditions for the existence of chaos in an averaged system under quasi-periodic perturbations for Ω = nω + εv, n = 1 - 4, where ν is not rational to ω. We are not able to prove the existence of chaos for n = 5 - 15, but show the chaotic behavior for n = 5 by numerical simulation. By numerical simulation we check on our theoretical analysis and further exhibit the complex dynamical behavior, including the bifurcation and reverse bifurcation from period-one to period-two orbits; the onset of chaos, the entire chaotic region without periodic windows, chaotic regions with complex periodic windows or with complex quasi-periodic windows; chaotic behaviors suddenly disappearing, or converting to period-one orbit which means that the system can be stabilized to periodic motion by adjusting bifurcation parameters α, δ, f0 and Ω; and the onset of invariant torus or quasi-periodic behaviors, the entire invariant torus region or quasi-periodic region without periodic window, quasi-periodic behaviors or invariant torus behaviors suddenly disappearing or converting to periodic orbit; and the jumping behaviors which including from period- one orbit to anther period-one orbit, from quasi-periodic set to another quasi-periodic set; and the interleaving occurrence of chaotic behaviors and invariant torus behaviors or quasi-periodic behaviors; and the interior crisis; and the symmetry breaking of period-one orbit; and the different nice chaotic attractors. However, we haven't find the cascades of period-doubling bifurcations under the quasi-periodic perturbations and show the differences of dynamical behaviors and technics of research between the periodic perturbations and quasi-periodic perturbations.  相似文献   

10.
11.
In many control engineering applications, it is impossible or expensive to measure all the states of the dynamical system and only the system output is available for controller design. In this study, a new dynamic output feedback control algorithm is proposed to stabilize the unstable periodic orbit of chaotic spinning disks with incomplete state information. The proposed control structure is based on the T‐S fuzzy systems. This investigation also introduces a new design procedure to satisfy a constraint on the T‐S fuzzy dynamic output feedback control signal. This procedure is independent of the exact value of initial states. Finally, computer simulations are accomplished to illustrate the performance of the proposed control algorithm. © 2015 Wiley Periodicals, Inc. Complexity 21: 148–159, 2016  相似文献   

12.
This study performs a systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, nonlinear oil-film force, and nonlinear gear mesh force. The dynamic orbits of the system are observed using bifurcation diagrams plotted with both the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents, and fractal dimensions of the gear-bearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, and chaotic behaviors. The results presented in this study provide an understanding of the operating conditions under which undesirable dynamic motion takes place in a gear-bearing system and therefore serves as a useful source of reference for engineers in designing and controlling such systems.  相似文献   

13.
This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.  相似文献   

14.
This paper reports a new four-dimensional energy resources chaotic system. The system is obtained by adding a new variable to a three-dimensional energy resource demand–supply system established for two regions of China. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and bifurcation diagrams. Linear feedback control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. Numerical simulations are presented to show these results.  相似文献   

15.
This study performs a systematic analysis of the dynamic behavior of a gear-bearing system with the turbulent flow effect, nonlinear suspension, nonlinear oil-film force and nonlinear gear mesh force. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless damping coefficient, unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gear system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic and chaotic behaviors. The results presented in this study provide a detailed understanding of the operating conditions under which undesirable dynamic motion takes place in gear-bearing system and therefore offer a useful source of reference for engineers in designing and controlling such systems.  相似文献   

16.
Washout filter is a simple filter that can be designed easily. In this paper, a system for controlling a neural equation with discrete time delay based on Washout filter is presented. The transcendental equation of the corresponding linearized system is analyzed. In this control system, it is found that Hopf bifurcation occurs when the control parameters are chosen properly and that a chaotic orbit can be controlled to a stable periodic solution. The stability condition for bifurcating periodic solutions and the direction of Hopf bifurcation are studied by applying the normal form theory and the center manifold theorem. Some numerical results are also presented to illustrate the correctness of our results.  相似文献   

17.
Bifurcations and Chaos in Duffing Equation   总被引:2,自引:0,他引:2  
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcingis investigated.The conditions of existence of primary resonance,second-order,third-order subharmonics,m-order subharmonics and chaos are given by using the second-averaging method,the Melnikov method andbifurcation theory.Numerical simulations including bifurcation diagram,bifurcation surfaces and phase portraitsshow the consistence with the theoretical analysis.The numerical results also exhibit new dynamical behaviorsincluding onset of chaos,chaos suddenly disappearing to periodic orbit,cascades of inverse period-doublingbifurcations,period-doubling bifurcation,symmetry period-doubling bifurcations of period-3 orbit,symmetry-breaking of periodic orbits,interleaving occurrence of chaotic behaviors and period-one orbit,a great abundanceof periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaoticattractors.Our results show that many dynamical behaviors are strictly departure from the behaviors of theDuffing equation with odd-nonlinear restoring force.  相似文献   

18.
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier ‘stochastic’ here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf’s method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos.  相似文献   

19.
20.
The phase control method is a non-feedback control technique which has been used for different purposes in continuous periodically driven dynamical systems. One of the main goals of this paper is to apply this control technique to the bouncing ball system, which can be seen as a paradigmatic periodically driven discrete dynamical system, and has a rather simple physical interpretation. The main idea is to apply a periodic control signal including a phase difference with respect to the periodic forcing of the initial system and to analyze its effect on the dynamics of the bouncing ball system. The numerical simulations we have carried out clearly show the strong effect of the phase of the control signal in suppressing or generating chaotic behavior and in changing the period of a periodic orbit. We have also analyzed the effect of the phase in the phenomenon of the crisis-induced intermittency, showing how the phase enhances the size of the attractor near a crisis and can induce the intermittent behavior. Finally we have analyzed the scaling behavior of the crisis by varying the phase difference between the perturbation and the external forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号