首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
聚苯胺复合正极膜固态锂电池   总被引:4,自引:0,他引:4  
  相似文献   

2.
陈龙  黄少博  邱景义  张浩  曹高萍 《化学进展》2021,33(8):1378-1389
动力电池领域对锂二次电池的能量密度和安全性提出了更高要求,研究高能量密度固态锂电池对发展新能源产业具有重要意义。相比传统的有机电解液锂离子电池,采用聚合物固体电解质的聚合物固态锂电池不但具有明显提升的安全性,而且能够匹配高容量电极材料,实现能量密度的有效提升。聚合物固态锂电池是最有前景的锂二次电池之一,然而聚合物固体电解质与锂负极间仍存在严重的界面副反应、锂负极表面易生长枝晶等问题。近年来,通过电解质成分调控、电解质力学性能提升、电解质/锂负极界面调控和匹配三维锂负极等手段,聚合物基固态锂电池性能明显提升。基于此,本文介绍了常见的聚合物固体电解质及其与锂负极间的界面挑战,从添加无机填料、使用高强度基底膜、分级层状结构设计、构筑界面缓冲层、交联网络设计以及固态锂负极保护等几个方面综述了提升聚合物基电解质/锂负极界面稳定性的最新研究成果,最后对解决聚合物固体电解质/锂负极界面兼容性的研发方向和发展趋势进行了展望。  相似文献   

3.
随着新能源汽车的快速发展,车用锂电池的安全性能备受关注。不同于传统锂离子电池采用可燃有机液体电解液,固态锂电池采用无机类固体电解质,具有不可燃、不漏液、高安全、长寿命等一系列优点。此外,固体电解质可兼容高容量金属锂负极,进而实现高能量密度(300 Wh/kg)。然而,由于固体电解质缺乏流动性,其与金属锂负极的界面问题已经成为制约固态锂电池发展的瓶颈。本文简要讨论了金属锂负极与固体电解质界面所存在的几项关键挑战:(1)界面润湿;(2)枝晶生长;(3)金属锂的利用率等问题,并介绍了针对这几项关键问题的近期研究进展。  相似文献   

4.
聚合物固态电解质相比于液态电解质表现出更良好的热稳定性,并且对比无机固态电解质具有机械性能好、耐候性好和易加工成型等特点,因此在下一代高能量密度储能装置中极具应用潜能.然而,固态电解质与正负极材料之间的界面稳定性问题阻碍了其实际应用.本文总结了锂离子聚合物固态电解质的关键特性,讨论了聚合物固态电解质与高电压正极的普遍界面问题,包括界面接触不良与界面不稳定问题.分析了导致高电压富镍氧化物正极材料与聚合物固态电解质严重界面问题的主要因素,针对相关因素总结了缓解界面问题的有效策略,并展望了未来聚合物固态电解质与富镍层状氧化物的界面性能提升的研究方向,为基于聚合物固态电解质与高电压正极材料固态锂电池的研究提供参考.  相似文献   

5.
固态锂电池因展现出高的安全性、高的能量密度和长循环寿命而成为备受期待的能量存贮装置。作为固态锂电池的重要组成部分,固态电解质的发展仍然制约着固态锂电池的商业化进程。目前,固态电解质仍然面临室温离子电导率较低,电解质与电极之间界面较差等问题。本文综述了近两年来性质较为优越的固态锂电池电解质的研究状况,包括固态聚合物电解质、无机氧化物电解质以及无机硫化物电解质。归纳了这些性能优良的固态电解质的主要特点,以此提出未来固态电解质可能的发展方向。  相似文献   

6.
液态锂离子电池存在易燃易爆、易短路等致命的安全问题,同时也存在续航里程焦虑等技术问题,开发安全性能好、能量密度高的锂离子电池是行业发展的迫切需求。与传统液态锂离子电池相比,全固态电池具有使用安全、理论比容量高等优点,所以得到了广泛的研究,被誉为下一代电池主流技术。其中,无机固态电解质在全固态电池中扮演着重要的角色,国内外的科研人员对此进行了大量的研究工作。本文介绍了不同类型无机固态电解质的最新进展,其中包括氧化物固态电解质、硫化物固态电解质和卤化物固态电解质;并对无机固态电解质的界面问题、晶体结构、制备方法以及掺杂改性等方面的研究进行了阐述。最后,对近几年来无机固态电解质还有待解决的问题进行了讨论,同时对其未来的研究方向作出了展望。  相似文献   

7.
Lithium ion batteries (LIBs) are becoming the most popular energy storage systems in our society. However, frequently occurring accidents of electrical cars powered by LIBs have caused increased safety concern regarding LIBs. Solid-state lithium batteries (SSLBs) are believed to be the most promising next generation energy storage system due to their better in-built safety mechanisms than LIBs using flammable organic liquid electrolyte. However, constructing the ionic conducting path in SSLBs is challenging due to the slow ionic diffusion of Li ion in solid-state electrolyte, particularly in the case of solid-solid contact between the solid materials. In this paper, we demonstrate the construction of an integrated electrolyte and cathode for use in SSLBs. An integrated electrolyte and cathode membrane is obtained via simultaneous electrospinning and electrospraying of a polyacrylonitrile (PAN) electrolyte and a LiFePO4 (LFP) cathode material respectively, for the cathode layer, followed by the electrospinning of PAN to prepare the electrolyte layer. The resultant integrated PAN-LFP membrane is flexible. Scanning electron microscopy and energy dispersive X-ray spectroscopy measurement results show that the electrode and electrolyte are in close contact with each other. After the integrated PAN-LFP membrane is filled with a succinonitrile-bistrifluoromethanesulfonimide (SN-LiTFSI) salt mixture, it is paired with a lithium foil metal anode electrode, and the resultant solid-state Li|PAN-LFP cell exhibits limited polarization and outstanding interfacial stability during long term cycling. That is, the Li|PAN-LFP cell presents a specific capacity of 160.8 mAh∙g−1 at 0.1C, and 81% of the initial capacity is maintained after 500 cycles at 0.2C. The solid-state Li|PAN-LFP cell also exhibits excellent resilience in destructive tests such as cell bending and cutting.  相似文献   

8.
《电化学》2017,(4)
锂离子电池的广泛应用对储能器件的能量密度、安全性和充放电速度提出了新的要求.全固态锂电池与传统锂离子电池相比具有更少的副反应和更高的安全性,已成为下一代储能器件的首选.构建匹配的电极/电解质界面是在全固态锂电池中获得优异综合性能的关键.本文采用第一性原理计算研究了固态电池中电解质表面及正极/电解质界面的局域结构和锂离子输运性质.选取β-Li_3PS_4(010)/LiCoO_2(104)和Li_4GeS_4(010)/LiCoO_2(104)体系计算了界面处的成键情况及锂离子的迁移势垒.部分脱锂态的正极/电解质界面上由于Co-S成键的加强削弱了P/Ge-S键的强度,降低了对Li+的束缚,从而导致了更低的锂离子迁移势垒.理解界面局域结构及其对Li+输运性质的影响将有助于人们在固态电池中构建性能优异的电极/电解质界面.  相似文献   

9.
10.
固态锂电池具有安全性好、能量密度高等优点,在新能源汽车和智能电子等领域具有广泛的应用前景。然而,由化学/电化学和物理因素引起的界面副反应与高界面阻抗问题制约了其进一步发展。先前的综述已对解决化学/电化学界面问题的方法有了相对全面的阐述,但并未细致讨论不同结构固态电池中物理界面的影响及应对策略。本文将简要介绍化学/电化学界面问题及其解决方案;重点按结构特点将固态锂电池分为三明治结构、粉末复合结构和3D一体化结构,细致地分析不同电池结构的物理界面特点与优化策略,并对各种策略的优缺点进行比较分析;最后,对固态锂电池电极/电解质界面的未来研究方向进行展望。  相似文献   

11.
Under low temperature (LT) conditions (−80 °C∼0 °C), lithium-ion batteries (LIBs) may experience the formation of an extensive solid electrolyte interface (SEI), which can cause a series of detrimental effects such as Li+ deposition and irregular dendritic filament growth on the electrolyte surface. These issues ultimately lead to the degradation of the LT performance of LIBs. As a result, new electrode/electrolyte materials are necessary to address these challenges and enable the proper functioning of LIBs at LT. Given that most electrochemical reactions in lithium-ion batteries occur at the electrode/electrolyte interface, finding solutions to mitigate the negative impact caused by SEI is crucial to improve the LT performance of LIBs. In this article, we analyze and summarize the recent studies on electrode and electrolyte materials for low temperature lithium-ion batteries (LIBs). These materials include both metallic materials like tin, manganese, and cobalt, as well as non-metallic materials such as graphite and graphene. Modified materials, such as those with nano or alloying characteristics, generally exhibit better properties than raw materials. For instance, Sn nanowire-Si nanoparticles (SiNPs−In-SnNWs) and tin dioxide carbon nanotubes (SnO2@CNT) have faster Li+ transport rates and higher reversible capacity at LT. However, it′s important to note that when operating under LT, the electrolyte may solidify, leading to difficulty in Li+ transmission. The compatibility between the electrolyte and electrode can affect the formation of the solid electrolyte interphase (SEI) and the stability of the electrode/electrolyte system. Therefore, a good electrode/electrolyte system is crucial for successful operation of LIBs at LT.  相似文献   

12.
随着人类对能源的使用与存储需求不断增加,高能量密度和高安全性能的二次锂电池体系正在被不断地开发与完善.深入理解充放电过程中锂电池内部电极/电解质界面的电化学过程以及微观反应机理,有利于指导电池材料的优化设计.原位电化学原子力显微镜将原子力显微镜的高分辨表界面分析优势与电化学反应装置相结合,能够在电池运行条件下实现对电极/电解质界面的原位可视化研究,并进一步从纳米尺度上揭示界面结构的演化规律与动力学过程.本文总结了原位电化学原子力显微镜在锂电池电极过程中的最新研究进展,主要包括基于转化型反应的正极过程、固体电解质中间相的动态演化以及固态电池界面演化与失效分析.  相似文献   

13.
Functionalized molecular sieve SBA-15 with trimethylchlorosilane was used as an inorganic filler in a poly(ethyleneoxide) (PEO) polymer matrix to synthesize a composite solid-state polymer electrolyte (CSPE) using LiClO4 as the doping salts, which is designated to be used for rechargeable lithium batteries. The methyl group-functionalized SBA-15 (fSBA-15) powder possesses more hydrophobic characters than SBA-15, which improves the miscibility between the fSBA-15 filler and the PEO matrix. The interaction between the fSBA-15 and PEO polymer matrix was investigated by scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Linear sweep voltammetry and electrochemical impedance spectroscopy were employed to study the electrochemical stability windows, ionic conductivity, and interfacial stability of the CSPE. The temperature dependence of the change of the PEO polymer matrix in the CSPE from crystallization to amorphous phase was surveyed, for the first time, at different temperature by Fourier transform infrared emission spectroscopy. It has demonstrated that the addition of the fSBA-15 filler has improved significantly the electrochemical compatibility of the CSPE with a lithium metal electrode and enhanced effectively the ion conductivity of the CSPE. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007.  相似文献   

14.
锂离子电池的有机正极材料由于具有比容量高、环境友好和廉价等优点,近年来成为研究的热点.但是,有机电极材料在液态电解液中的溶解流失易导致其容量迅速衰减,严重限制了它们的实际应用.本工作基于聚(甲基丙烯酸酯)/聚乙二醇的准固态电解质,考察了以柱[5]醌为正极的准固态锂二次电池的电化学性能.结果显示,柱[5]醌正极不仅保持了高容量的特性(首次放电容量410 mA h/g),并且循环寿命得到了有效提高.0.2 C下循环100周后,电极的容量保持率为88.5%,显示了柱[5]醌在高比能量准固态锂离子电池中的应用潜力.  相似文献   

15.
The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs).  相似文献   

16.
17.
Lithium-ion batteries are commonly used for electrical energy storage in portable devices and are promising systems for large-scale energy storage. However, their application is still limited due to electrode degradation and stability issues. To enhance the fundamental understanding of electrode degradation, we report on the Raman spectroscopic characterization of LiCoO2 cathode materials of working Li-ion batteries. To facilitate the spectroscopic analysis of the solid electrolyte interface (SEI), we apply in situ surface-enhanced Raman spectroscopy under battery working conditions by using Au nanoparticles coated with a thin SiO2 layer (Au@SiO2). We observe a surface-enhanced Raman signal of Li2CO3 at 1090 cm−1 during electrochemical cycling as an intermediate. Its formation/decomposition highlights the role of Li2CO3 as a component of the SEI on LiCoO2 composite cathodes. Our results demonstrate the potential of Raman spectroscopy to monitor electrode/electrolyte interfaces of lithium-ion batteries under working conditions thus allowing relations between electrochemical performance and structural changes to be established.  相似文献   

18.
采用溶胶凝胶法合成前驱体,再在空气气氛中分别于400℃、500℃和600℃下焙烧,得到锂离子电池正极材料(1-2x)MgxMnPO4/C(0≤x≤0.1);利用X射线衍射分析、环境扫描电镜分析、恒流充放电、阻抗测试等分析了产物的结构、形貌和电化学性能.结果表明,合成的(1-2x)MgxMnPO4/C颗粒呈球形,具有橄榄...  相似文献   

19.
Recently, the need of improvement of energy storage has led to the development of Lithium batteries with porous materials as electrodes. Porous Germanium (pGe) has shown promise for the development of new generation Li-ion batteries due to its excellent electronic, and chemical properties, however, the effect of lithium in its properties has not been studied extensively. In this contribution, the effect of surface and interstitial Li on the electronic properties of pGe was studied using a first-principles density functional theory scheme. The porous structures were modeled by removing columns of atoms in the [001] direction and the surface dangling bonds were passivated with H atoms, and then replaced with Li atoms. Also, the effect of a single interstitial Li in the Ge was analyzed. The transition state and the diffusion barrier of the Li in the Ge structure were studied using a quadratic synchronous transit scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号