首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vertical electron detachment energies (VDEs) of 30 MX 4 (-) (M = B, Al; X = F, Cl, Br) anions were calculated at the OVGF level with the 6-311+G(3df) basis sets. The largest vertical electron binding energy was found for the AlF 4 (-) system (9.789 eV). The strong VDE dependence on the symmetry of the species, ligand type, ligand-central atom distance, and bonding/nonbonding/antibonding character of the highest occupied molecular orbital was observed and discussed.  相似文献   

2.
Using a composite coupled cluster method employing sequences of correlation consistent basis sets for complete basis set (CBS) extrapolations and with explicit treatment of core-valence correlation and scalar and spin-orbit relativistic effects, the 0 K enthalpies of a wide range of cadmium-halide reactions, namely, Cd + (HCl, HBr, ClO, BrO, Cl2, BrCl, Br2) have been determined to an estimated accuracy of +/-1 kcal/mol. In addition, accurate equilibrium geometries, harmonic frequencies, and dissociation energies have been calculated at the same level of theory for all the diatomic (e.g., CdH, CdO, CdCl, CdBr) and triatomic (CdHCl, CdHBr, CdClO, CdBrO, CdCl2, CdBrCl, CdBr2) species involved in these reactions, some for the very first time. Like their mercury analogues, all of the abstraction reactions are predicted to be endothermic, while the insertion reactions are strongly exothermic with the formation of stable linear, Cd-centric complexes. With the exception of CdH and the reactions involving this species, the present results for the remaining Cd-containing systems are believed to be the most accurate to date.  相似文献   

3.
The aim of this study is the determination of the g tensor of the tetrathiafulvalene (TTF) molecule involved in chlorine and bromine radical–ion salts. This work is based on ab initio calculations using several basis sets which enabled us to compare theoretical and experimental measurement data. The results show clearly the impact of the structural distortions on the g gyroscopic matrix elements and proves the important fact that even a small variation of the crystallographic parameters has major consequences on the physical–chemical properties. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002  相似文献   

4.
High Pressure Polymorphy of Dihalides MX2 (M: Ca, Sr, Eu; X: F, Cl, Br) High pressure investigations of alkaline and rare earth dihalides yielded new polymorphs of CaBr2, SrCl2, SrBr2 und EuBr2, which could be quenched and characterized by x-ray methods. The polymorphic transitions can be understood as single steps in a sequence of structures given by the coordination numbers. We discuss the thermodynamic stability of the high pressure phases in terms of the Madelung part of lattice energy of all polymorphic forms of these compounds.  相似文献   

5.
采用密度泛函方法(B3LYP)优化了MX2(AsH3)2[M=Pd;X=Cl(1),Br(2),I(3)和M=Pt;X=Cl(4),Br(5),I(6)]的基态结构,得到的几何参数与实验结果符合.以基态几何为基础,将TD-DFT方法用于计算标题配合物的电子吸收光谱.研究结果表明,金属的dx2-y2与配体所组成的反键轨道为LUMO轨道,从而该类配合物具有d-d跃迁属性的吸收带;在多数跃迁过程中,配体也有较大的贡献.  相似文献   

6.
使用密度泛函理论,在B3LYP/6—311+G^*水平上,对金属富氮化合物N3MN3(M=Be,Mg,Ca)的两种几何结构进行了理论计算,并对得到的几何结构做了振动频率分析.结果表明,所有几何结构的振动频率都是正的,没有虚频存在,说明这类金属富氮化合物是热力学稳定的,当嵌入金属离子后,M—N之间开始表现出显著的离子性特征,由线形N3某团组成的N3MN3比由三角形N3某团组成的N3MN3更稳定.  相似文献   

7.
Technetium dimers Tc2(O2CCH3)4X2 (X =?Cl, Br) were synthesized and studied by X-ray Absorption Fine Structure spectroscopy (XAFS). EXAFS analysis gave for Tc2(O2CCH3)4Cl2: d Tc-Tc =?2.18(1) Å, d Tc–Cl =?2.43(1) Å and for Tc2(O2CCH3)4Br2: d Tc–Tc =?2.19(1) Å, d Tc-Br =?2.63(1) Å. The Tc Tc separations are in agreement with Raman studies while the Tc–X distances are somewhat larger. Comparison with other Tc(III) quadruply bonded dimers indicates that the carboxylate compounds exhibit larger Tc–Tc separations. The effect of the terminal ligand (nature and position) on the Tc–Tc separation is discussed.  相似文献   

8.
Ab initio calculations using effective core potentials and polarized split-valence basis sets are reported for the title compounds. The calculated geometries, vibrational frequencies, infrared intensities, harmonic force fields, dipole moments, relative energies, and barriers to pseudorotation are compared with the available experimental data for the known molecules. Predictions are made for those pentahalides that are still unknown. Trends in the calculated properties are identified and discussed.  相似文献   

9.
Quantum chemical calculations of HgX(n) (X=F, Cl, Br, and I; n=1, 2, and 4) in the gas phase are performed using the density functional theory (DFT), two-component spin-orbit (SO) DFT, and high-level ab initio method with relativistic effective core potentials (RECPs). Molecular geometries, vibrational frequencies, and various thermochemical energies are calculated and compared with available experimental results. We assess the performances of DFT functionals for calculating various molecular properties. The PBE0 functional is generally reasonable for the molecular geometries and the vibrational frequencies, but the M06 functional is more appropriate for estimating thermochemical energies. Both shape-consistent and energy-consistent RECPs correctly describe the SO effect.  相似文献   

10.
Photoelectron spectroscopy (PES) and ab initio calculations are combined to investigate the electronic structure of MO(n)- clusters (M = W, Mo; n = 3-5). Similar PES spectra were observed between the W and Mo species. A large energy gap between the first and second PES bands was observed for MO3- and correlated with a stable closed-shell MO3 neutral cluster. The electron binding energies of MO4- increase significantly relative to those of MO3-, and there is also an abrupt spectral pattern change between MO3- and MO4-. Both MO4- and MO5- give PES features with extremely high electron binding energies (>5.0 eV) due to oxygen-2p-based orbitals. The experimental results are compared with extensive density functional and ab initio [CCSD(T)] calculations, which were performed to elucidate the electronic and structural evolution for the tungsten oxide clusters. WO3 is found to be a closed-shell, nonplanar molecule with C3v symmetry. WO4 is shown to have a triplet ground state (3A2) with D2d symmetry, whereas WO5 is found to be an unusual charge-transfer complex, (O2-)WO3+. WO4 and WO5 are shown to possess W-O* and O2-* radical characters, respectively.  相似文献   

11.
Structure and properties of hydrated clusters of halogen gas, X2.nH2O (X = Cl, Br, and I; n = 1-8) are presented following first principle based electronic structure theory, namely, BHHLYP density functional and second-order Moller-Plesset perturbation (MP2) methods. Several geometrical arrangements are considered as initial guess structures to look for the minimum energy equilibrium structures by applying the 6-311++G(d,p) set of the basis function. Results on X2-water clusters (X = Br and I) suggest that X2 exists as a charge separated ion pair, X+delta-X-delta in the hydrated clusters, X2.nH2O (n > or = 2). Though the optimized structures of Cl2.nH2O clusters look like X2.nH2O (X = Br and I) clusters, Cl2 does not exist as a charge separated ion pair in the presence of solvent water molecules. The calculated interaction energy between X2 and solvent water cluster increases from Cl2.nH2O to I2.nH2O clusters, suggesting solubility of gas-phase I2 in water to be a maximum among these three systems. Static and dynamic polarizabilities of hydrated X2 clusters, X2.nH2O, are calculated and observed to vary linearly with the size (n) of these water clusters with correlation coefficient >0.999. This suggests that the polarizability of the larger size hydrated clusters can be reliably predicted. Static and dynamic polarizabilities of these hydrated clusters grow exponentially with the frequency of an external applied field for a particular size (n) of hydrated cluster.  相似文献   

12.
[((t)Bu(3)SiS)MX[(12) are wheels for first row transition metals (M = Co, X = Cl; M = Ni, X = Br), but for nickel, simpler [e.g. [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2)[ and more complicated [e.g. [(mu-SSi(t)Bu(3))Ni](5)(mu(5)-S)] structures are by-products.  相似文献   

13.
High yield routes to the unstable halogen azides and isocyanates have permitted vacuum ultraviolet photoelectron spectra to be obtained for the chlorine and bromine azides, and the chlorine, bromine and iodine isocyanates. The results are compared with ab initio and semi-empirical calculations, leading to a reassignment of the photoelectron spectra of the parent acids, HN3 and HNCO in the high energy region. The halogen azide and isocyanate photoelectron spectra provide an interesting investigation into how the orbitals of a linear pseudohalide grouping are perturbed by an off-azis halogen atom. A photoelectron spectrum for the unknown molecule FNCO is predicted.  相似文献   

14.
A series of new organoelement-substituted (Si-, Ge-) tricyclononenes and tricyclononadienes was obtained via the [2σ+2σ+2π]-cycloaddition reaction of the corresponding substituted ethylenes and acetylenes with quadricyclane. The chemical behavior of Si-, Ge-, Sn-containing olefins and acetylenes under the cycloaddition conditions was studied.  相似文献   

15.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

16.
17.
The molecular and electronic structures of trinuclear face-shared [M3X12]3-species of Mo (X = F, Cl, Br, I) and W (X = Cl), containing linear chains of metal atoms, have been investigated using density functional theory. The possibility of variations in structure and bonding has been explored by considering both symmetric (D3d) and unsymmetric (C3v) forms, the latter having one long and one short metal-metal distance. Analysis of the bonding in the structurally characterized [Mo3I12]3- trimer reveals that the metal-metal interaction qualitatively corresponds to a two-electron three-center sigma bond between the Mo atoms and, consequently, a formal Mo-Mo bond order of 0.5. However, the calculated spin densities suggest that the electrons in the metal-metal sigma bond are not fully decoupled and therefore participate in the antiferromagnetic interactions of the metal cluster. Although the same observation applies to [Mo3X12]3- (X = Br, Cl, F) and [W3Cl12]3-, both the spin densities and shorter distances between the metal atoms indicate that the metal-metal interaction is stronger in these systems. The broken-symmetry approach combined with spin projection has been used to determine the energy of the low-lying spin multiplets arising from the magnetic coupling between the metal centers. Either the symmetric and unsymmetric S = 3/2 state is predicted to be the ground state for all five systems. For [Mo3X12]3- (X = Cl, Br, I), the symmetric form is more stable but the unsymmetric structure, where two metal centers are involved in a metal-metal triple bond while the third center is decoupled, lies close in energy and is thermally accessible. Consequently, at room temperature, interconversion between the two energetically equivalent configurations of the unsymmetric form should result in an averaged structure that is symmetric. This prediction is consistent with the reported structure of [Mo3I12]3-, which, although symmetric, indicates significant movement of the central Mo atom toward the terminal Mo atoms on either side. In contrast, unsymmetric structures with a triple bond between two metal centers are predicted for [Mo3F2]3- and [W3C12]3-, as the symmetric structure lies too high in energy to be thermally accessible.  相似文献   

18.
A variety of ab initio methods have been used to calculate the X (2)Pi and A (2)Sigma(+) state spectroscopic parameters of the GeCX (X=F,Cl,Br) free radicals. The theoretical methods and basis sets were tested on GeCH, for which extensive experimental data are available, and found to give predictions sufficiently reliable to guide experimental searches for spectra. In all cases, the linear Ge=C-X species was found to be the global minimum on the potential energy surface, with the bent X-Ge=C ((2)A(')) isomer as a local minimum much higher (62-36 kcal/mol) in energy. In both the ground and excited states, the GeC moiety is very similar to that of GeCH, with a double bond in the lower state and a triple bond in the excited state, indicating that halogenation does not radically perturb the energetics or structure of germanium methylidyne. Ground state GeCX radicals have suitable rotational constants for microwave studies, although they suffer from only modest dipole moments. Matrix infrared experiments are most likely to detect the nu(1) fundamentals in the 1450-1100 cm(-1) region or the nu(3) fundamentals at the transition between the mid- and far-infrared regions. We have used the ab initio values for the Renner-Teller parameter, the average bending frequency, and the spin-orbit coupling constant to calculate the ground state energy levels, which will be helpful in the interpretation of A-X single vibronic level emission spectra, if they can be observed. The electronic absorption spectra of the (2)Pi(32) spin component of the 0(0) (0) bands of all three radicals have been calculated assuming typical jet-expansion conditions and should be useful in future laser-induced fluorescence, resonance enhanced multiphoton ionization, or cavity ringdown searches for the electronic band systems.  相似文献   

19.
20.
The hydrogen abstract reactions of OH radicals with HOF (R1), HOCl (R2), and HOBr (R3) have been studied systematically by a dual-level direct-dynamics method. The geometries and frequencies of all the stationary points are optimized at the MP2/6-311+G(2d, 2p) level of theory. A hydrogen-bonded complex is located at the product channel for the OH + HOBr reaction. To improve the energetics information along the minimum energy path (MEP), single-point energy calculations are carried out at the CCSD(T)/6-311++G(3df, 3pd) level of theory. Interpolated single-point energy (ISPE) method is employed to correct the energy profiles for the three reactions. It is found that neither the barrier heights (DeltaE) nor the H-O bond dissociation energies [D(H-O)] exhibit any clear-cut linear correlations with the halogen electronegative. The decrease of DeltaE and D(H-O) for the three reactions are in order of HOF > HOBr > HOCl. Rate constants for each reaction are calculated by canonical variational transition-state theory (CVT) with a small-curvature tunneling correction (SCT) within 200-2000 K. The agreement of the rate constants with available experimental values for reactions R2 and R3 at 298 K is good. Our results show that the variational effect is small while the tunneling correction has an important contribution in the calculation of rate constants in the low-temperature range. Due to the lack of the kinetic data of these reactions, the present theoretical results are expected to be useful and reasonable to estimate the dynamical properties of these reactions over a wide temperature range where no experimental value is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号