首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.  相似文献   

2.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

3.
提出一种在悬浮液气-液界面漂浮组装亚微米单分散聚苯乙烯(PS)微球和纳米SiO2颗粒二元胶粒晶体的新方法, 并系统研究了漂浮组装机理. 研究表明, 聚苯乙烯微球和二氧化硅两种胶体颗粒在悬浮液气-液界面的漂浮组装是以PS微球的组装为主导的. 在一定PS微球相浓度范围内, 悬浮液中PS 微球与SiO2颗粒的初始体积配比基本不影响PS微球有序组装的形成. PS微球粒径在150-500 nm时易于形成有序排列, 较小或较大粒径的PS微球难以形成有序排列. SiO2颗粒的组装是一种以PS微球为“基底”的沉积过程. 二元胶粒晶体中SiO2颗粒的体积分数由其在混合悬浮液中的相浓度所决定.  相似文献   

4.
This article reviews recent developments in self-assembly of polymer colloids into colloidal crystals, a good candidate material for photonic crystals. Self-assembly strategy has developed as a facile and efficient method to fabricate colloidal crystals. Much research work has been focused on controlling the morphology and improving the quality, as well as finding applications of the colloidal crystals.  相似文献   

5.
聚苯乙烯光子晶体的制备及其在传感中的应用   总被引:11,自引:3,他引:8  
谈勇  杨可靖  曹跃霞  周蓉  陈明  钱卫平 《化学学报》2004,62(20):2089-2092,F010
以基于毛细作用的垂直沉积法将单分散的二氧化硅胶体微球自组装成光子晶体.在二氧化硅光子晶体的多孔结构里填充聚苯乙烯甲苯溶液,经甲苯挥发,通过氢氟酸处理去除二氧化硅模板,制备出精美的聚苯乙烯光子晶体.研究表明:保留了模板有序多孔结构的聚苯乙烯能被用来作为敏感膜,这使得其在基于折射率变化的传感应用中具有潜在的价值.  相似文献   

6.
In this Article, we addressed a facile method for the fabrication of porous polyimide film with an ordered surface based on the solvent-evaporation-assisted in situ self-assembly of polyamic acid (PAA, precursor of polyimide) and silica microspheres during vacuum-drying of PAA/silica colloid solution. Hydroxyl groups on the surface of silica microspheres have strong hydrogen-bonding with PAA chains, which improve the dispersion of silica microspheres in PAA/DMF solution and further help the self-assembly of PAA/silica colloid solution via solvent evaporation. The approach is simple, neither the preparation of special template nor complex preparation process and precise control over condition is necessary. Furthermore, the method could be employed for mass production of ordered porous polyimide films, and by changing the content and size of silica microspheres, the pore size and porous structure of the porous polyimide films could be tunable. The wettability behavior of the as-prepared porous polyimide films is also studied; the ordered surface topography of the porous polyimide films could change the wettability from hydrophilicity to hydrophobicity.  相似文献   

7.
The design of pore structure is the key factor for the performance of porous carbon spheres.In this wo rk,novel micron-sized colloidal crystal microspheres consisting of fibrous silica(F-SiO_2) nanoparticles are firstly prepared by water-evapo ration-induced self-assembly of F-SiO_2 nanoparticles in the droplets of an inverse emulsion system to be used as sacrificial templates.Acrylonitrile(AN) was infiltrated in the voids of the F-SiO_2 colloidal crystal microspheres,and in-situ induced by ~(60)Co y-ray to polymerize into polyacrylonitrile(PAN).After the PAN-infiltrated F-SiO_2 colloidal crystal microspheres were carbonized and etched with HF solution,novel micron-sized inverse-opal N-doped carbon(IO-NC) microspheres consisting of hollow carbon nanoparticles with a hierarchical macro/meso-porous inner surface were obtained.The IO-NC microspheres have a specific surface area as high as 266.4 m~2/g and a molar ratio of C/N of 5.They have a good dispersibility in water,and show a high adsorption capacity towards rhodamine B(RhB) up to 137.28 mg/(g microsphe re).This work offers a way to obtain novel micron-sized hierarchical macro/meso-porous N-doped carbon microspheres,which opens a new idea to prepare high-performance hierarchical porous carbon materials.  相似文献   

8.
汪晓娅  韩东 《化学通报》2018,81(10):909-913
胶体光子晶体由于其可调变的结构色在绿色印刷、印染等领域备受关注,而其光子带隙的宽度和位置由光子晶体的晶格参数(晶面间距,通常受胶体微球尺寸影响)和介质的折射率决定。现有人工胶体光子晶体主要基于SiO_2和高分子(如聚苯乙烯(PS)等)微球的组装制备,由于胶体微球材质种类有限,折射率调控受限,因而目前调控胶体光子晶体结构色主要靠改变胶体微球的尺寸来实现。本文首先制备高折射率(2.6)的TiO_2纳米晶,在乳液聚合制备单分散的PS(折射率1.6)微球过程中,将所制备的TiO_2纳米晶掺杂于PS微球中,通过TiO_2的掺杂量有效调控胶体微球的折射率,进而实现胶体光子晶体的结构色调控。以多色胶体光子晶体微球的水溶液为墨水,采用彩色喷墨打印技术打印了电脑设计的光子晶体彩画。本文发展的光子晶体结构色调控新技术拓展了胶体光子晶体的应用。  相似文献   

9.
We describe a robust and facile approach to the selective modification of patterned porous films via layer-by-layer (LBL) self-assembly. Positively charged honeycomb-patterned films were prepared from polystyrene-block-poly(N,N-dimethyl-aminoethyl methacrylate) (PS-b-PDMAEMA) and a PS/PDMAEMA blend by the breath figure method followed by surface quaternization. Alginate and chitosan were alternately deposited on the films via LBL self-assembly. The assembly on the PS-b-PDMAEMA film exhibits two stages with different growth rates, as elucidated by water contact angles, fluorescence microscopy, and quartz crystal microbalance results. The assembly can be controlled on the top surface or across all surfaces of the film by changing the number of deposition cycles. We confirm that there exists a Cassie-Wenzel transition with an increase in deposition cycles, which is responsible for the tunable assembly. For the PS/PDMAEMA film, the pores can be completely wetted and the polyelectrolytes selectively assemble inside the pores, instead of on the top surface. The controllable selective assembly forms unique hierarchical structures and opens a new route for surface modification of patterned porous films.  相似文献   

10.
Polystyrene (PS) colloidal particles were prepared in aqueous solution by a quick emulsifier-free emulsion polymerization (EFEP) method. The scanning electron microscopy (SEM) images indicate that the as-synthesized particles have good sphericity and uniform size (dispersion coefficient Cv is less than 5%). The monodisperse PS microspheres with different diameter were obtained easily by varying the monomer concentration. The atomic force microscopy (AFM) images show that the PS microspheres were self-assembled into three-dimensional ordered structure on micas by dropping-casting method. The self-assembly method is simple and quick. Based on the experimental results, a possible self-assembly mechanism was proposed.  相似文献   

11.
We report an improved convective self-assembly method for the fabrication of highly ordered, crack-free binary colloidal crystals (BCCs) and the associated inverse structures in large domains at length scales of several centimeters. With this method, BCCs can be fabricated in a non-close packed pattern and binary inverse opal films can be obtained over a centimeter scale. The presence of tetraethyl orthosilicate (TEOS) sol in the self-assembly system was found to play a significant role in the resultant structures. The pseudostop band positions are adjustable via varying the number ratio of small to large polystyrene (PS) spheres. At a given TEOS-to-PS ratio, the binary inverse opal film thickness was controllable by varying the colloidal volume fraction with an upper thickness threshold (>16 layers).  相似文献   

12.
In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.  相似文献   

13.
在20~70℃范围内,用垂直沉积的方法可使表面富含羧基的单分散交联聚合物微球在不同的基底上快速自组装成三维有序的胶体晶.不同粒径的微球形成的胶体晶其光禁带峰位不同,因此可调控不同波长的光在胶体晶中的传播.利用紫外-可见光谱研究了胶体晶的光禁带峰位与组成其微球粒径之间的关系.结果表明,随着构成胶体晶微球粒径的增大,胶体晶光禁带峰位发生了红移,而随着入射光角度的增大,胶体晶的光禁带峰位发生了蓝移.利用原子力显微镜和扫描电子显微镜研究了其它条件对聚合物微球有序排列的影响,发现聚合物微球在pH值为3.0~13.0范围内可以形成三维有序自组装胶体晶.这是由于在不同的pH值下,聚合物微球表面发生羧基化及去羧基化反应,导致在自组装过程中微球之间和微球与介质之间作用力的变化  相似文献   

14.
用漂浮组装方法以亚微米尺度单分散的聚苯乙烯(PS)微球作为模板, 在悬浮液气-液界面处组装PS模板微球与纳米级胶体颗粒, 形成二元胶体颗粒共混物, 再去除模板得到有序大孔材料.  相似文献   

15.
Microcontact printing of colloidal crystals   总被引:1,自引:0,他引:1  
Patterned two-dimensional (2D) colloidal crystals have been transferred by a modified mucp technique that was based on the use of polymer film as "glue" to provide an efficient interaction between the microsphere "ink" and substrate. The versatility of this method has been demonstrated by the patterning of colloidal crystal on a nonplanar substrate and heterogeneously structured colloidal crystal film. The table of contents graphic shows an SEM image of the ordered parallel lines of 2D colloidal crystals on a polymer-coated glass tube with a 3.7 mm radius of curvature.  相似文献   

16.
A facile gas phase polymerization method has been proposed in this work to fabricate porous free-standing polypyrrole (PPy) films. In the presence of pyrrole vapor, the films are obtained in the gas/water interface spontaneously through the interface polymerization with the oxidant of FeCl(3) in the water. Both the thickness of the film and the size of the pores could be controlled by adjusting the concentrations of the oxidant and the reaction time. The as-prepared PPy films exhibited a superhydrophilic behavior due to its composition and porous structures. We have demonstrated a possible formation mechanism for the porous free-standing PPy films. This gas phase polymerization is shown to be readily scalable to prepare large area of PPy films.  相似文献   

17.
关英  张拥军 《高分子学报》2017,(11):1739-1752
Poly(N-isopropylacrylamide)(PNIPAM)微凝胶粒子是一种软的胶体粒子.和单分散的SiO_2、PS、PMMA等硬的胶体粒子一样,单分散的PNIPAM微凝胶粒子也可以自组装成为高度有序的胶体晶体.微凝胶粒子软物质的特性及其对外部刺激的响应性赋予其不同于硬球的组装行为.微凝胶胶体晶体的高度有序结构及其刺激响应性使其在诸多领域有重要用途.本文分别介绍了三维及二维微凝胶胶体晶体组装的研究进展,并对已开发的基于微凝胶胶体晶体的应用进行了总结.  相似文献   

18.
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.  相似文献   

19.
Gold (Au) nanoparticle arrays with tunable morphology and optical characteristics were synthesized by in-situ self-assembly process that occurred on the surface of aniline-modified polystyrene (PS) microspheres. The method can be used to control the growth of both single and aggregated Au nanoparticle arrays on PS microsphere surface. This method could also be adapted for synthesis of other noble metals hybrid materials, which opens exciting opportunities for their practical applications.  相似文献   

20.
Two-dimensional (2D) nanomaterials with the thickness at atomic level are promising candidates for a wide range of applications, and now reach the point to create diversified 2D architectures. The colloidal synthesis route is powerful to produce crystalline nanosheets, nanoribbons and nanoplatelets, and the self-assembly strategy is robust to integrate the functionalities of different nano-objects. In this review, we bridge the colloidal synthesis of nanosheets and the 2D self-assembly of nanoclusters (NCs) with the aim to further optimize the physical and chemical properties of 2D nanomaterials. Ultrasmall NCs, the intermediate for synthesizing nanosheets, are highlighted to show the similarity of 2D crystallization and 2D self-assembly. The modification of conventional 2D colloidal synthesis route greatly permits the controlled self-assembly of NCs into free-standing monolayers in colloidal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号