首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let \(I_{n}\) be the symmetric inverse semigroup on \(X_{n}=\{1,\ldots ,n\}\), and let \(DP_{n}\) and \(ODP_{n}\) be its subsemigroups of partial isometries and of order-preserving partial isometries on \(X_{n}\) under its natural order, respectively. In this paper we find the ranks of the subsemigroups \(DP_{n,r}=\{ \alpha \in DP_{n}:|\mathrm {im\, }(\alpha )|\le r\}\) and \(ODP_{n,r}=\{ \alpha \in ODP_{n}: |\mathrm {im\, }(\alpha )|\le r\}\) for \(2\le r\le n-1\).  相似文献   

2.
Let \(n\in \mathbb {N}\), \(n\ge 2\), \(\beta >0\) fixed, and \(0<b\le \beta \). For \(n-1<\alpha \le n\), we look to classify extremal points for the fractional differential equation \(D_{0^+}^{\alpha }u+p(t) u=0\), satisfying the boundary conditions \(u^{(i)}(0)=0\), \(i=0,\ldots ,n-2\), \(D_{0^+}^\gamma u(b)=0\), where p(t) is a continuous nonnegative function on \([0,\beta ]\) which does not vanish identically on any nondegenerate compact subinterval of \([0,\beta ]\). Using the theory of Krein and Rutman, first extremal points of this boundary value problem are classified. As an application, the results are applied, along with a fixed-point theorem, to show the existence of a solution of a nonlinear fractional boundary value problem.  相似文献   

3.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

4.
Let \(\mathbf {X}=(X_{jk})_{j,k=1}^n\) denote a Hermitian random matrix with entries \(X_{jk}\), which are independent for \(1\le j\le k\le n\). We consider the rate of convergence of the empirical spectral distribution function of the matrix \(\mathbf {X}\) to the semi-circular law assuming that \(\mathbf{E}X_{jk}=0\), \(\mathbf{E}X_{jk}^2=1\) and that
$$\begin{aligned} \sup _{n\ge 1}\sup _{1\le j,k\le n}\mathbf{E}|X_{jk}|^4=:\mu _4<\infty , \end{aligned}$$
and
$$\begin{aligned} \sup _{1\le j,k\le n}|X_{jk}|\le D_0n^{\frac{1}{4}}. \end{aligned}$$
By means of a recursion argument it is shown that the Kolmogorov distance between the expected spectral distribution of the Wigner matrix \(\mathbf {W}=\frac{1}{\sqrt{n}}\mathbf {X}\) and the semicircular law is of order \(O(n^{-1})\).
  相似文献   

5.
An automorphism \(\alpha \) of a Cayley graph \(\mathrm{Cay}(G,S)\) of a group G with connection set S is color-preserving if \(\alpha (g,gs) = (h,hs)\) or \((h,hs^{-1})\) for every edge \((g,gs)\in E(\mathrm{Cay}(G,S))\). If every color-preserving automorphism of \(\mathrm{Cay}(G,S)\) is also affine, then \(\mathrm{Cay}(G,S)\) is a Cayley color automorphism (CCA) graph. If every Cayley graph \(\mathrm{Cay}(G,S)\) is a CCA graph, then G is a CCA group. Hujdurovi? et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group \(F_{21}\) of order 21. We first show that there is a unique non-CCA Cayley graph \(\Gamma \) of \(F_{21}\). We then show that if \(\mathrm{Cay}(G,S)\) is a non-CCA graph of a group G of odd square-free order, then \(G = H\times F_{21}\) for some CCA group H, and \(\mathrm{Cay}(G,S) = \mathrm{Cay}(H,T)\mathbin {\square }\Gamma \).  相似文献   

6.
The Hardy–Littlewood inequalities for m-linear forms have their origin with the seminal paper of Hardy and Littlewood (Q J Math 5:241–254, 1934). Nowadays it has been extensively investigated and many authors are looking for the optimal estimates of the constants involved. For \(m<p\le 2m\) it asserts that there is a constant \(D_{m,p}^{\mathbb {K}}\ge 1\) such that
$$\begin{aligned} \left( \sum _{j_{1},\ldots ,j_{m}=1}^{n}\left| T(e_{j_{1}},\ldots ,e_{j_{m} })\right| ^{\frac{p}{p-m}}\right) ^{\frac{p-m}{p}}\le D_{m,p} ^{\mathbb {K}}\left\| T\right\| , \end{aligned}$$
for all m-linear forms \(T:\ell _{p}^{n}\times \cdots \times \ell _{p} ^{n}\rightarrow \mathbb {K}=\mathbb {R}\) or \(\mathbb {C}\) and all positive integers n. Using a regularity principle recently proved by Pellegrino, Santos, Serrano and Teixeira, we present a straightforward proof of the Hardy–Littlewood inequality and show that:
  1. (1)
    If \(m<p_{1}\le p_{2}\le 2m\) then \(D_{m,p_{1}}^{\mathbb {K}}\le D_{m,p_{2}}^{\mathbb {K}}\);
     
  2. (2)
    \(D_{m,p}^{\mathbb {K}}\le D_{m-1,p}^{\mathbb {K}}\) whenever \(m<p\le 2\left( m-1\right) \) for all \(m\ge 3\).
     
  相似文献   

7.
In this paper, a complete classification is achieved of all the regular covers of the complete bipartite graphs \(K_{n,n}\) with cyclic covering transformation group, whose fibre-preserving automorphism group acts 2-arc-transitively. All these covers consist of one threefold covers of \(K_{6,6}\), one twofold cover of \(K_{12, 12}\) and one infinite family X(rp) of p-fold covers of \(K_{p^r,p^r}\) with p a prime and r an integer such that \(p^r\ge 3\). This infinite family X(rp) can be derived by a very simple and nice voltage assignment f as follows: \(X(r, p)=K_{p^r, p^r}\times _f \mathbb {Z}_p\), where \(K_{p^r, p^r}\) is a complete bipartite graph with the bipartition \(V=\{ \alpha \bigm |\alpha \in V(r,p)\}\cup \{ \alpha '\bigm |\alpha \in V(r,p)\}\) for the r-dimensional vector space V(rp) over the field of order p and \(f_{\alpha ,\beta '}=\sum _{i=1}^ra_ib_i,\,\, \mathrm{for\,\,all}\,\,\alpha =(a_i)_r, \beta =(b_i)_r\in V(r,p)\).  相似文献   

8.
Schrijver (Nieuw Archief voor Wiskunde, 26(3) (1978) 454–461) identified a family of vertex critical subgraphs of the Kneser graphs called the stable Kneser graphs \(SG_{n,k}\). Björner and de Longueville (Combinatorica 23(1) (2003) 23–34) proved that the neighborhood complex of the stable Kneser graph \(SG_{n,k}\) is homotopy equivalent to a k-sphere. In this article, we prove that the homotopy type of the neighborhood complex of the Kneser graph \(KG_{2,k}\) is a wedge of \((k+4)(k+1)+1\) spheres of dimension k. We construct a maximal subgraph \(S_{2,k}\) of \(KG_{2,k}\), whose neighborhood complex is homotopy equivalent to the neighborhood complex of \(SG_{2,k}\). Further, we prove that the neighborhood complex of \(S_{2,k}\) deformation retracts onto the neighborhood complex of \(SG_{2,k}\).  相似文献   

9.
In this work, we solve the system of Laguerre–Freud equations for the recurrence coefficients \(\beta _n\), \(\gamma _{n+1} , n \ge 0\) of the \(D_{w}\)-semi-classical orthogonal polynomials sequences of class one in the case when \(\beta _{0}=-t_{0}\), \(\beta _{n+1}=t_{n}-t_{n+1}\) and \(\gamma _{n+1}=-t_{n}^{2}\) with \(t_{n}\ne 0\;n\ge 0\), where \(D_w\) is the divided difference operator. There are essentially four canonical families.  相似文献   

10.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

11.
For \(q,n,d \in \mathbb {N}\), let \(A_q(n,d)\) be the maximum size of a code \(C \subseteq [q]^n\) with minimum distance at least d. We give a divisibility argument resulting in the new upper bounds \(A_5(8,6) \le 65\), \(A_4(11,8)\le 60\) and \(A_3(16,11) \le 29\). These in turn imply the new upper bounds \(A_5(9,6) \le 325\)\(A_5(10,6) \le 1625\)\(A_5(11,6) \le 8125\) and \(A_4(12,8) \le 240\). Furthermore, we prove that for \(\mu ,q \in \mathbb {N}\), there is a 1–1-correspondence between symmetric \((\mu ,q)\)-nets (which are certain designs) and codes \(C \subseteq [q]^{\mu q}\) of size \(\mu q^2\) with minimum distance at least \(\mu q - \mu \). We derive the new upper bounds \(A_4(9,6) \le 120\) and \(A_4(10,6) \le 480\) from these ‘symmetric net’ codes.  相似文献   

12.
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix \(Y_n\) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix \(U_n\). If \(F_i^m\) denotes the vector formed by the first m-coordinates of the ith row of \(Y_n-\sqrt{n}U_n\) and \(\alpha \,=\,\frac{m}{n}\), our main result shows that the Euclidean norm of \(F_i^m\) converges exponentially fast to \(\sqrt{ \big (2-\frac{4}{3} \frac{(1-(1 -\alpha )^{3/2})}{\alpha }\big )m}\), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm \(\epsilon _n(m)\,=\,\sup _{1\le i \le n, 1\le j \le m} |y_{i,j}- \sqrt{n}u_{i,j}|\) and we find a coupling that improves by a factor \(\sqrt{2}\) the recently proved best known upper bound on \(\epsilon _n(m)\). Our main result also has applications in Quantum Information Theory.  相似文献   

13.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

14.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

15.
The Voronin universality theorem asserts that a wide class of analytic functions can be approximated by shifts \(\zeta (s+i\tau )\), \(\tau \in \mathbb {R}\), of the Riemann zeta-function. In the paper, we obtain a universality theorem on the approximation of analytic functions by discrete shifts \(\zeta (s+ix_kh)\), \(k\in \mathbb {N}\), \(h>0\), where \(\{x_k\}\subset \mathbb {R}\) is such that the sequence \(\{ax_k\}\) with every real \(a\ne 0\) is uniformly distributed modulo 1, \(1\le x_k\le k\) for all \(k\in \mathbb {N}\) and, for \(1\le k\), \(m\le N\), \(k\ne m\), the inequality \(|x_k-x_m| \ge y^{-1}_N\) holds with \(y_N> 0\) satisfying \(y_Nx_N\ll N\).  相似文献   

16.
For \(n\ge 1\), the nth Ramanujan prime is defined as the least positive integer \(R_{n}\) such that for all \(x\ge R_{n}\), the interval \((\frac{x}{2}, x]\) has at least n primes. Let \(p_{i}\) be the ith prime and \(R_{n}=p_{s}\). Sondow, Laishram, and other scholars gave a series of upper bounds of s. In this paper we establish several results giving estimates of upper and lower bounds of Ramanujan primes. Using these estimates, we discuss a conjecture on Ramanujan primes of Sondow–Nicholson–Noe and prove that if \(n>10^{300}\), then \(\pi (R_{mn})\le m\pi (R_{n})\) for \(m\ge 1\).  相似文献   

17.
In this paper, we first give a classification of the family of 2-geodesic transitive abelian Cayley graphs. Let \(\Gamma \) be such a graph which is not 2-arc transitive. It is shown that one of the following holds: (1) \(\Gamma \cong \mathrm{K}_{m[b]}\) for some \(m\ge 3\) and \(b\ge 2\); (2) \(\Gamma \) is a normal Cayley graph of an elementary abelian group; (3) \(\Gamma \) is a cover of Cayley graph \(\Gamma _K\) of an abelian group T / K, where either \(\Gamma _K\) is complete arc transitive or \(\Gamma _K\) is 2-geodesic transitive of girth 3, and A / K acts primitively on \(V(\Gamma _K)\) of type Affine or Product Action. Second, we completely determine the family of 2-geodesic transitive circulants.  相似文献   

18.
Let \(R_{k}\) denote the polynomial residue ring \(F_{2^m}[u]/\langle u^{k} \rangle \), where \(2^{j-1}+1\le k\le 2^{j}\) for some positive integer \(j\). Motivated by the work in [1], we introduce a new Gray map from \(R_{k}\) to \(F_{2^m}^{2^{j}}\). It is proved that the Gray image of a linear \((1+u)\) constacyclic code of an arbitrary length \(N\) over \(R_{k}\) is a distance invariant linear cyclic code of length \(2^{j}N\) over \(F_{2^m}\). Moreover, the generator polynomial of the Gray image of such a constacyclic code is determined, and some optimal linear cyclic codes over \(F_{2}\) and \(F_{4}\) are constructed under this Gray map.  相似文献   

19.
Dror Varolin 《Mathematische Annalen》2016,365(3-4):1137-1154
Let M be a 3-manifold with torus boundary components \(T_{1}\) and \(T_2\). Let \(\phi :T_{1} \rightarrow T_{2}\) be a homeomorphism, \(M_\phi \) the manifold obtained from M by gluing \(T_{1}\) to \(T_{2}\) via the map \(\phi \), and T the image of \(T_{1}\) in \(M_\phi \). We show that if \(\phi \) is “sufficiently complicated” then any incompressible or strongly irreducible surface in \(M_\phi \) can be isotoped to be disjoint from T. It follows that every Heegaard splitting of a 3-manifold admitting a “sufficiently complicated” JSJ decomposition is an amalgamation of Heegaard splittings of the components of the JSJ decomposition.  相似文献   

20.
Let R be a commutative ring with nonzero identity, \(L_{n}(R)\) be the set of all lower triangular \(n\times n\) matrices, and U be a triangular subset of \(R^{n}\), i.e., the product of any lower triangular matrix with the transpose of any element of U belongs to U. The graph \(GT^{n}_{U}(R^n)\) is a simple graph whose vertices consists of all elements of \(R^{n}\), and two distinct vertices \((x_{1},\dots ,x_{n})\) and \((y_{1},\dots ,y_{n})\) are adjacent if and only if \((x_{1}+y_{1}, \ldots ,x_{n}+y_{n})\in U\). The graph \(GT^{n}_{U}(R^n)\) is a generalization for total graphs. In this paper, we investigate the basic properties of \(GT^{n}_{U}(R^n)\). Moreover, we study the planarity of the graphs \(GT^{n}_{U}(U)\), \(GT^{n}_{U}(R^{n}{\setminus } U)\) and \(GT^{n}_{U}(R^n)\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号