首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An automorphism \(\alpha \) of a Cayley graph \(\mathrm{Cay}(G,S)\) of a group G with connection set S is color-preserving if \(\alpha (g,gs) = (h,hs)\) or \((h,hs^{-1})\) for every edge \((g,gs)\in E(\mathrm{Cay}(G,S))\). If every color-preserving automorphism of \(\mathrm{Cay}(G,S)\) is also affine, then \(\mathrm{Cay}(G,S)\) is a Cayley color automorphism (CCA) graph. If every Cayley graph \(\mathrm{Cay}(G,S)\) is a CCA graph, then G is a CCA group. Hujdurovi? et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group \(F_{21}\) of order 21. We first show that there is a unique non-CCA Cayley graph \(\Gamma \) of \(F_{21}\). We then show that if \(\mathrm{Cay}(G,S)\) is a non-CCA graph of a group G of odd square-free order, then \(G = H\times F_{21}\) for some CCA group H, and \(\mathrm{Cay}(G,S) = \mathrm{Cay}(H,T)\mathbin {\square }\Gamma \).  相似文献   

2.
Let R be a commutative ring with \(1\ne 0\) and the additive group \(R^+\). Several graphs on R have been introduced by many authors, among zero-divisor graph \(\Gamma _1(R)\), co-maximal graph \(\Gamma _2(R)\), annihilator graph AG(R), total graph \( T(\Gamma (R))\), cozero-divisors graph \(\Gamma _\mathrm{c}(R)\), equivalence classes graph \(\Gamma _\mathrm{E}(R)\) and the Cayley graph \(\mathrm{Cay}(R^+ ,Z^*(R))\). Shekarriz et al. (J. Commun. Algebra, 40 (2012) 2798–2807) gave some conditions under which total graph is isomorphic to \(\mathrm{Cay}(R^+ ,Z^*(R))\). Badawi (J. Commun. Algebra, 42 (2014) 108–121) showed that when R is a reduced ring, the annihilator graph is identical to the zero-divisor graph if and only if R has exactly two minimal prime ideals. The purpose of this paper is comparison of graphs associated to a commutative Artinian ring. Among the results, we prove that for a commutative finite ring R with \(|\mathrm{Max}(R)|=n \ge 3\), \( \Gamma _1(R) \simeq \Gamma _2(R)\) if and only if \(R\simeq \mathbb {Z}^n_2\); if and only if \(\Gamma _1(R) \simeq \Gamma _\mathrm{E}(R)\). Also the annihilator graph is identical to the cozero-divisor graph if and only if R is a Frobenius ring.  相似文献   

3.
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume \(\Vert M\Vert \) of M is equal to \(\mathrm{Vol}(M)/v_n\), where \(v_n\) is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio \(\mathrm{Vol}(M)/\Vert M\Vert \) is strictly smaller than \(v_n\) if M is compact with nonempty geodesic boundary. We prove here a quantitative version of Jungreis’ result for \(n\ge 4\), which bounds from below the ratio \(\Vert M\Vert /\mathrm{Vol}(M)\) in terms of the ratio \(\mathrm{Vol}(\partial M)/\mathrm{Vol}(M)\). As a consequence, we show that, for \(n\ge 4\), a sequence \(\{M_i\}\) of compact hyperbolic n-manifolds with geodesic boundary satisfies \(\lim _i \mathrm{Vol}(M_i)/\Vert M_i\Vert =v_n\) if and only if \(\lim _i \mathrm{Vol}(\partial M_i)/\mathrm{Vol}(M_i)=0\). We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension 3.  相似文献   

4.
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding \(L \rightarrow \mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\), where \(L \rightarrow \mathcal {N}(L)\) is the familiar embedding of L into its congruence frame \(\mathcal {N}(L)\), and \(\mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\) is the Booleanization of \(\mathcal {N}(L)\). Finally, we show that for subfit frames the extension can also be realized as the embedding \(L \rightarrow {{\mathrm{S}}}_\mathfrak {c}(L)\) of L into its complete Boolean algebra \({{\mathrm{S}}}_\mathfrak {c}(L)\) of sublocales which are joins of closed sublocales.  相似文献   

5.
Let \(\bar{p}(n)\) denote the number of overpartitions of n. Fortin et al. and Hirschhorn and Sellers established some congruences modulo powers of 2 for \(\bar{p}(n)\). Recently, Xia and Yao found several congruences modulo powers of 2 and 3. In particular, they proved that \(\bar{p}(96n+12)\equiv 0 \ (\mathrm{mod}\ 9)\) and \(\bar{p}(24n+19)\equiv 0\ (\mathrm{mod\ }27)\). In this paper, we generalize the two congruences and establish several new infinite families of congruences modulo 9 and 27 for \(\bar{p}(n)\). Furthermore, we prove some strange congruences modulo 9 and 27 for \(\bar{p}(n)\) by employing some results due to Cooper et al. For example, we prove that for \(k\ge 0\), \(\bar{p}(4^{k+1})\equiv 2^{k+3}+6(-1)^k\ (\mathrm{mod} \ 27) \) and \(\bar{p}\left( 7^{2k}\right) \equiv 2-2k\ (\mathrm{mod}\ 9)\). We also present two conjectures on congruences for \(\bar{p}(n)\).  相似文献   

6.
A decomposition of the blocks of an \(\textsf {STS}(v)\) into partial parallel classes of size m is equivalent to a Kirkman signal set \(\textsf {KSS}(v,m)\). We give decompositions of \(\textsf {STS}(4v-3)\) into classes of size \(v-1\) when \(v \equiv 3 \pmod {6}\), \(v \not = 3\). We also give decompositions of \(\textsf {STS}(v)\) into classes of various sizes when v is a product of two arbitrary integers that are both congruent to \(3 \pmod {6}\). These results produce new families of \(\textsf {KSS}(v,m)\).  相似文献   

7.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

8.
Let G be a connected Lie group. In this paper, we study the density of the images of individual power maps \(P_k:G\rightarrow G:g\mapsto g^k\). We give criteria for the density of \(P_k(G)\) in terms of regular elements, as well as Cartan subgroups. In fact, we prove that if \(\mathrm{Reg}(G)\) is the set of regular elements of G, then \(P_k(G)\cap \mathrm{Reg}(G)\) is closed in \(\mathrm{Reg}(G)\). On the other hand, the weak exponentiality of G turns out to be equivalent to the density of all the power maps \(P_k\). In linear Lie groups, weak exponentiality reduces to the density of \(P_2(G)\). We also prove that the density of the image of \(P_k\) for G implies the same for any connected full rank subgroup.  相似文献   

9.
The maximum number vertices of a graph G inducing a 2-regular subgraph of G is denoted by \(c_\mathrm{ind}(G)\). We prove that if G is an r-regular graph of order n, then \(c_\mathrm{ind}(G) \ge \frac{n}{2(r-1)} + \frac{1}{(r-1)(r-2)}\) and we prove that if G is a cubic, claw-free graph on order n, then \(c_\mathrm{ind}(G) > \frac{13}{20}n\) and this bound is asymptotically best possible.  相似文献   

10.
Let \(L=-\mathrm{div}(A\nabla )\) be a second order divergence form elliptic operator and A an accretive \(n\times n\) matrix with bounded measurable complex coefficients in \({\mathbb R}^n\). Let \(\nabla b\in L^n({\mathbb R}^n)\,(n>2)\). In this paper, we prove that the commutator generated by b and the square root of L, which is defined by \([b,\sqrt{L}]f(x)=b(x)\sqrt{L}f(x)-\sqrt{L}(bf)(x)\), is bounded from the homogenous Sobolev space \({\dot{L}}_1^2({\mathbb R}^n)\) to \(L^2({\mathbb R}^n)\).  相似文献   

11.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

12.
Suppose there exists a Hadamard 2-\((m,\frac{m-1}{2},\frac{m-3}{4})\) design with skew incidence matrix, and a conference graph with v vertices, where \(v = 2m-1\). Under this assumption we prove that there exists a Siamese twin Menon design with parameters \((4m^{2},2m^{2}-m,m^{2}-m)\) intersecting in a balanced incomplete block design \(\mathrm {BIBD}(2m^{2} - m, m^{2} - m, m^{2} - m - 1)\) and a pairwise balanced design \(\mathrm {PBD}(2m^{2} - m, \{m^{2}, m^{2} - m\}, m^{2} - m - 1)\). These Menon designs lead to regular amicable Hadamard matrices of orders not previously constructed. Further we construct complex orthogonal designs of order \(4m^2\) and Butson Hadamard matrices \(\mathrm {BH}(4m^{2},2k)\) for all k. Some results regarding automorphisms of the constructed Menon designs are proven.  相似文献   

13.
We show that for any non-trivial representation \((V, \pi )\) of \(\mathfrak {u}(2)\) with the center acting as multiples of the identity, the semidirect product \(\mathfrak {u}(2) \ltimes _\pi V\) admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that \(\mathfrak {u}(2) \ltimes _\pi V\) degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor \(\mathrm {SU}(2)\) admitting a left invariant metric with negative Ricci is therefore obtained for any \(n \ge 7\).  相似文献   

14.
Given a connected simple graph \(G=(V(G),E(G))\), a set \(S\subseteq V(G)\) is said to be a 2-metric generator for G if and only if for any pair of different vertices \(u,v\in V(G)\), there exist at least two vertices \(w_1,w_2\in S\) such that \(d_G(u,w_i)\ne d_G(v,w_i)\), for every \(i\in \{1,2\}\), where \(d_G(x,y)\) is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by \(\dim _2(G)\). The metric \(d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}\) is defined as \(d_{G,2}(x,y)=\min \{d_G(x,y),2\}\). Now, a set \(S\subseteq V(G)\) is a 2-adjacency generator for G, if for every two vertices \(x,y\in V(G)\) there exist at least two vertices \(w_1,w_2\in S\), such that \(d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)\) for every \(i\in \{1,2\}\). The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by \({\mathrm {adim}}_2(G)\). In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product \(G\circ H\) of two graphs G and H. Specifically, we show that \(\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),\) where \(f(G,H)\ge 0\), and determine all the possible values of f(GH).  相似文献   

15.
An m-cover of the Hermitian surface \(\mathrm {H}(3,q^2)\) of \(\mathrm {PG}(3,q^2)\) is a set \(\mathcal {S}\) of lines of \(\mathrm {H}(3,q^2)\) such that every point of \(\mathrm {H}(3,q^2)\) lies on exactly m lines of \(\mathcal {S}\), and \(0<m<q+1\). Segre (Annali di Matematica Pura ed Applicata Serie Quarta 70:1–201, 1965) proved that if q is odd, then \(m=(q+1)/2\), and called such a set \(\mathcal {S}\) of lines a hemisystem. Penttila and Williford (J Comb Theory Ser A 118(2):502–509, 2011) introduced the notion of a relative hemisystem of a generalised quadrangle \(\varGamma \) with respect to a subquadrangle \(\varGamma '\): a set of lines \(\mathcal {R}\) of \(\varGamma \) disjoint from \(\varGamma '\) such that every point P of \(\varGamma \setminus \varGamma '\) has half of its lines (disjoint from \(\varGamma '\)) lying in \(\mathcal {R}\). In this paper, we provide an analogue of Segre’s result by introducing relative m-covers of generalised quadrangles of order \((q^2,q)\) with respect to a subquadrangle and proving that m must be q / 2 when the subquadrangle is doubly subtended. In particular, a relative m-cover of \(\mathrm {H}(3,q^2)\) with respect to a symplectic subgeometry \(\mathrm {W}(3,q)\) is a relative hemisystem.  相似文献   

16.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

17.
Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, congruences modulo powers of 2 for \(\overline{p}(n)\) were widely studied. In this paper, we prove several new infinite families of congruences modulo powers of 2 for \(\overline{p}(n)\). For example, for \(\alpha \ge 1\) and \(n\ge 0\),
$$\begin{aligned} \overline{p}(8\cdot 3^{4\alpha +4}n+5\cdot 3^{4\alpha +3})\equiv 0 \quad (\mathrm{mod}\,\,{2^8}). \end{aligned}$$
  相似文献   

18.
19.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

20.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号