首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We present GCMC simulations of argon adsorption in slit pores of different channel geometry. We show that the isotherm for an ink-bottle pore can be reconstructed as a linear combination of the local isotherms of appropriately chosen independent unit cells. Second, depending on the system parameters and operating conditions, the phenomena of cavitation and pore blocking can occur for a given configuration of the ink-bottle pore by varying the geometrical aspect ratio. Although it has been argued in the literature that the geometrical aspects of the system govern the evaporation mechanism (either cavitation or pore blocking), we here put forward an argument that the local compressibility in different parts of the ink-bottle pore is the deciding factor for evaporation. When the fluid in the small neck is strongly bound, cavitation is the governing process, and molecules in the cavity evaporate to the surrounding bulk gas via a mass transfer mechanism through the pore neck. When the pore neck is sufficiently large, the system of neck and cavity evaporates at the same pressure, which is a consequence of the comparable compressibility between the fluid in the neck and that in the cavity. This suggests that local compressibility is the measure of cohesiveness of the fluid prior to evaporation. One consequence that we derive from the analysis of isotherms of a number of connected pores is that by analyzing the adsorption branch or the desorption branch of an experimental isotherm may not lead to the correct pore sizes and the correct pore volume distribution.  相似文献   

2.
To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.  相似文献   

3.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

4.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   

5.
We review some recent progress in experimental studies of the adsorption hysteresis of simple molecules in ordered mesoporous silicas. We show that the nature of the adsorption hysteresis due to capillary condensation can be examined with less ambiguity by measuring the hysteresis loop for the ordered mesoporous silicas with three types of pore geometries (cylindrical, interconnected cylindrical, and interconnected spherical) over a wide temperature range. The adsorption hysteresis arises from the metastability of a confined phase and the temperature at which the hysteresis disappears is lower than the critical temperature of vapor-liquid equilibrium in pores. The hysteresis occurs mainly on the desorption rather than adsorption branch, irrespective of the pore geometries.  相似文献   

6.
The Frenkel-Halsey-Hill equation is used to describe the adsorption branch of a hysteresis loop upon polylayer adsorption with an H3 loop according to IUPAC nomenclature. The equation for the desorption branch of a hysteresis loop is derived from a combined solution to the equation for the Gibbs potential change, given the adsorbent swelling and pore connectivity function, and the Laplace equation taken for the conditions of infinitely elongated meniscus. This equation is shown to connect the adsorbate relative pressure in a bulk phase for the desorption branch of a hysteresis loop with the key parameters of the adsorption system. The equation obtained was verified by a water adsorption isotherm on natural mineral schungite.  相似文献   

7.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

8.
This numerical simulation paper focuses on the adsorption/desorption of water in disordered mesoporous silica glasses (Vycor-like). The numerical adsorbent was previously obtained by off lattice method, and was shown to reproduce quite well the micro- and mesotextural properties of real Vycor, as well as morphological (pore size distribution) and topological (pore interconnections) disorder. The water-water interactions are described by the SPC model while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption/desorption isotherms and the configurational energies are calculated by the Grand Canonical Monte Carlo simulation method. The low pressure results compare well with experiments, showing the good transferability of the intermolecular potential. It is shown that if the hysteresis loop observed in the adsorption/desorption isotherm is considered as a true phase transition (which is actually still an open question in the case of disordered porous materials), then it is possible to calculate the grand potential by applying the thermodynamic integration scheme. The grand potential is shown to be multivalued for low (subcritical) temperature, and continuous for high (supercritical) temperature. A coexistence point is found within the hysteresis loop, actually close to the vertical desorption line. Below the equilibrium chemical potential, the gaslike branch is stable whereas the liquidlike branch is metastable. The situation is reversed above the coexistence point.  相似文献   

9.
10.
In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.  相似文献   

11.
The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks.  相似文献   

12.
The use of colloidal crystals with various primary particle sizes as templates leads to the formation of three-dimensionally ordered mesoporous (3DOm) carbons containing spherical pores with tailorable pore size and extremely high pore volumes. We present a comprehensive structural characterization of these novel carbons by using nitrogen (77.4 K) and argon (87.3 K) adsorption coupled with the application of novel, dedicated quenched solid density functional theory (QSDFT) methods which assume correctly the underlying spherical pore geometry and also the underlying adsorption mechanism. The observed adsorption isotherms are of Type IV with Type H1-like hysteresis, despite the fact that pore blocking affects the position of the desorption branch. This follows also from detailed, advanced scanning hysteresis experiments which not only allow one to identify the underlying mechanisms of hysteresis, but also provide complementary information about the texture of these unique porous materials. This work addresses the problem of pore size analysis of novel, ordered porous carbons and highlights the importance of hysteresis scanning experiments for textural analysis of the pore network.  相似文献   

13.
We report experimental nitrogen adsorption isotherms of organics-coated silicas, which exhibit a low-pressure desorption branch that does not meet the adsorption branch upon emptying of the pores. To address the physical origin of such a hysteresis loop, we propose an equilibrium thermodynamic model that enables one to explain this phenomenon. The present model assumes that, upon adsorption, a small amount of nitrogen molecules penetrate within the organic layer and reach adsorption sites that are located on the inorganic surface, between the grafted or adsorbed organic molecules. The number of accessible adsorption sites thus varies with the increasing gas pressure, and then we assume that it stays constant upon desorption. Comparison with experimental data shows that our model captures the features of nitrogen adsorption on such hybrid organic/inorganic materials. In particular, in addition to predicting the shape of the adsorption isotherm, the model is able to estimate, with a reasonable number of adjustable parameters, the height of the low-pressure hysteresis loop and to assess in a qualitative fashion the local density of the organic chains at the surface of the material.  相似文献   

14.
We have used Grand Canonical Monte Carlo simulation to study argon adsorption at 87 K in wedge shaped mesopores. The structural parameters, including mean pore size, wall length and wedge angle, were varied to investigate their effects on the size, shape and the position of the hysteresis loop. Although the effects of pore size have been studied previously, the wall length and wedge angle have received little attention. We find that the wedge angle can have a significant effect on the existence, position, size and shape of the hysteresis loop, while the wall length affects the adsorptive capacity associated with the loop and the behaviour of the isotherm beyond the loop. The results of this work have far-reaching consequences for the characterization of pore size distribution where it is commonly assumed, when constructing a kernel of local isotherms, that pore size is uniform, since even a small deviation from a constant pore width can shift the condensation and evaporation pressures significantly and thus lead to an incorrect estimation of pore size.  相似文献   

15.
A Monte Carlo simulation method is used to study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shell and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 nm using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch.  相似文献   

16.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

17.
To examine the nature of the adsorption and desorption branches in hysteretic adsorption isotherms of gases on mesoporous materials, we measured the temperature dependence of the adsorption and desorption isotherms of argon, oxygen, and carbon dioxide onto MCM-41 with a pore diameter of 4.4 nm. The results clearly show that in the open-ended cylindrical pores of MCM-41, capillary condensation rather than evaporation takes place near a thermodynamical equilibrium transition, as opposed to the general statement that capillary evaporation can occur via a meniscus formed at the pore mouth, and, thus, takes place at equilibrium.  相似文献   

18.
19.
To examine the nature of the lower closure point of adsorption hysteresis in ordered mesoporous silicas, we measured the temperature dependence of the adsorption-desorption isotherm of nitrogen for three kinds of ordered silicas with cagelike pores and three kinds of ordered silicas with cylindrical pores. The lower closure point pressure of nitrogen in the cagelike pores with sufficiently small necks, that is, the cavitation pressure of a confined liquid, did not depend appreciably on the cage size in the temperature region far away from a hysteresis critical temperature (Tch) but its cage-size dependence was noticeable in the vicinity of Tch. The lower closure point in the cylindrical pores depended on the pore size, and its thermal behavior was totally different from that in the cagelike pores. Nevertheless, the hysteresis critical points of nitrogen in the ordered mesoporous silicas, which are defined as a threshold of temperatures (Tch) and pressure above which reversible capillary condensation takes place in a given size and shape of pores, fell on a common line in a temperature-pressure diagram regardless of the pore geometries. We consider this finding as evidence that capillary evaporation in the cylindrical pores follows a cavitation process in the vicinity of Tch in the same way as that in the cagelike pores and also that the low limit of the hysteresis loop that has been long recognized since 1965 is due to the occurrence of a vapor bubble in a stretched metastable liquid confined to the pores with decreasing pressure (cavitation).  相似文献   

20.
We discuss the thermodynamics of adsorption of fluids in pores when the solid-fluid interactions lead to partial wetting of the pore walls, a situation encountered, for example, in water adsorption in porous carbons. Our discussion is based on calculations for a lattice gas model of a fluid in a slit pore treated via mean field density functional theory (MFDFT). We calculate contact angles for pore walls as a function of solid-fluid interaction parameter, alpha, in the model, using Young's equation and the interfacial tensions calculated in MFDFT. We consider adsorption and desorption in both infinite pores and in finite length pores in contact with the bulk. In the latter case, contact with the bulk can promote evaporation or condensation, thereby dramatically reducing the width of hysteresis loops. We show how the observed behavior changes with alpha. By using a value of alpha that yields a contact angle of about 85 degrees and maintaining the bulk fluid in a supersaturated vapor state on adsorption, we find an adsorption/desorption isotherm qualitatively similar to those for graphitized carbon black where pore condensation occurs at supersaturated bulk vapor states in the spaces between the primary particles of the adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号