首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface modification of Y2O3 nanoparticles   总被引:1,自引:0,他引:1  
Rare earth ion-doped yttrium oxide (Y2O3) nanocrystals are nontoxic and can be prepared as upconversion materials for cellular imaging, but they do not suspend well in water. In contrast to their tendency to dissolve in acidic media, yttria (Y2O3) nanoparticles readily react with phosphonic acids to give phosphonate-bonded yttria particles. Through the choice of phosphonic acid, the hydrophilicity of the nanoparticles can be controlled. The synthesis of a novel tetraethylene glycol-derived phosphonic acid is described; yttria treated with the corresponding phosphonate is easily dispersed in aqueous media. The preparation of yttria bonded to a phosphonate that may be used for cross coupling with biomolecules is also described.  相似文献   

2.
Density functional theory simulations show that modifying rutile TiO(2) with metal oxide nanoclusters produces composite materials with potential visible light photocatalytic activity.  相似文献   

3.
近年来纳米材料被广泛应用于生物医学、航空航天和精细化工等领域。构成纳米材料的纳米粒子具有小尺寸效应、表面效应和宏观量子隧道效应等性质。其中金纳米粒子由于其独特的荧光特性、良好的生物相容性和表面等离子共振等性质,被广大科研人员进行深入研究。例如,在生物医学领域,科研人员构建了一系列新型的金纳米比色传感器、光学探针及各类载药体系等。然而,目前金纳米粒子仍存在水分散性差、肾清除效率低和量子发射产率低等问题,限制了其广泛应用。因此,研究人员对金纳米粒子表面进行多样化修饰,从而能有效克服上述缺点。本文就目前主流配体表面修饰金纳米粒子的研究进展进行了详细总结,着重介绍了功能化金纳米粒子在生物成像、生物检测、生物治疗三方面的应用,最后对金纳米粒子的临床治疗机制的探索以及商业化的应用进行了展望,希望能为相关领域的研究者们提供新思路。  相似文献   

4.
Tin oxide, antimony-doped tin oxide (ATO), and silica nanosized particles in aqueous dispersion were reacted with various amounts of 3-methacryloxypropyltrimethoxysilane (MPS). The kinetics were followed by 29Si NMR and the products were analyzed by FTIR and 29Si NMR. The kinetic experiments on ATO and silica revealed that the hydrolysis is the rate-determining step in these reactions. The reaction of MPS with the particles is favored over the homocondensation of MPS. Quantitative analysis using FTIR revealed that the amount of MPS grafted onto the tin oxide and silica particles is limited to the amount needed to fill one monolayer. For ATO the maximum amount of grafted MPS was only 50-70% of the amount that is needed for a closed monolayer. The MPS molecules are for the most part oriented parallel to the oxide surface, and a hydrogen bond between the MPS-carbonyl and the oxide is formed.  相似文献   

5.
Gold clusters adsorbed with CO, Au(m)(CO)(n) (-) (m=2-5; n=0-7), were studied by photoelectron spectroscopy (PES). The first few CO adsorptions were observed to induce significant redshifts to the PES spectra relative to pure gold clusters. For each Au cluster, a critical CO number (n(c)) was observed, beyond which the PES spectra of Au(m)(CO)(n) (-) change very little with increasing n. n(c) was shown to correspond exactly to the available low coordination apex sites in each Au cluster. CO first chemisorbs to these sites and additional CO then only physisorbs to the chemisorption-sautrated Au(m)(CO)(n) (-) complexes.  相似文献   

6.
A versatile and inexpensive method for the introduction of amine groups onto the surface of silica-coated magnetite composite nanoparticles has been established based on the condensation of (aminopropyl)triethoxysilane (APTS). The process was observed to be sensitive to a range of variables, and a range of silane surface-modified nanoparticles was synthesized under various reaction conditions, that is, solvent systems [water, tetrahydrofuran (THF), ethanol, or 1:1 mixtures of them], reaction times (from 1 to 24 h), and temperatures (18, 50, and 70 degrees C), with water as the catalyst and silane at either 0.2% or 2% (w/v) in an attempt to optimize the process. The products of the various reactions were characterized in terms of their possession of surface -NH2 groups, morphologies, and properties with respect to DNA binding and elution before being modified with a single-stranded oligonucleotide capture sequence. It was observed that careful manipulation of temperature, time, and solvent conditions was important for optimal silanization of the nanoparticles, and in our experiments best results were obtained when silanization of the particles in suspension involved use of water as the solvent and APTS at 0.2% (w/v) and when the reaction was conducted at room temperature for 5 h and was preceded by ultrasonication of the particle suspension. The materials produced were used in experiments to selectively capture complementary nucleic acid sequences by hybridization after grafting with an oligonucleotide. The efficiency of the oligonucleotide-modified particles in the capture experiments was observed to be directly related to the original density of amine groups present at the surface of the support. The results indicate that surface engineering of the nanoparticles was possible by silanization under defined, optimized conditions. This approach could be extended to the activation of such surfaces and other materials with other functional groups.  相似文献   

7.
稀土掺杂上转换纳米粒子(RED-UCNPs)作为一种新型高效的上转换发光纳米材料,具有反斯托克斯位移大,发射光谱窄、发光寿命长、材料毒性低等优点,已成为荧光标记、光动力学治疗、生物成像和构建生物传感器等领域的研究热点。然而,目前广泛使用的溶剂热法合成的RED-UCNPs生物相容性和亲水性差,而且不具备与生物分子之间相偶联的活性基团,因此对RED-UCNPs进行表面功能化修饰就显得格外重要。本文重点综述了RED-UCNPs的表面功能化修饰的类型及其应用现状,为RED-UCNPs的进一步研究开发和应用提供思路和参考依据。  相似文献   

8.
We report on the synthesis of ZnO and TiO2 nanoparticles by solution-phase methods, with a particular focus on the influence of experimental parameters on the kinetics of nucleation and coarsening. The nucleation rate of ZnO from the reaction between ZnCl2 and NaOH in ethanol was found to increase with increasing precursor concentration, while the coarsening rate is independent of precursor concentration up to a threshold concentration. The nucleation rate of ZnO from Zn(OOC-CH3)2 and NaOH in n-alkanols was found to decrease with decreasing chain length, which is explained by the increase of the dielectric constant of the solvent. Due to the larger solubility of ZnO, nucleation is significantly slower than that observed in the case of TiO2. TiO2 nanoparticles coarsen according to the Lifshitz-Slyozov-Wagner model for Ostwald ripening. We also show that using amorphous titania as a base material, pure anatase and brookite nanoparticles can be synthesized.  相似文献   

9.
An in situ electron paramagnetic resonance (EPR) study has been carried out for anatase (Hombikat UV100) and rutile TiO(2) nanoparticles at liquid helium (He) temperature (4.2 K) under UV irradiation. Rutile titania was synthesized by ultrasonic irradiation with titanium tetrachloride (TiCl(4)) as the precursor. XRD and Raman results evidence the crystallinity of titania phases. The nature of trapped electrons and holes has been investigated by EPR spectroscopy under air and vacuum conditions. Illumination of TiO(2) powder (anatase and rutile) at 4.2 K resulted in the detection of electrons being trapped at Ti(4+) sites within the bulk and holes trapped at lattice oxide ions at the surface. The stability of electron traps was very sensitive to temperature in both phases of TiO(2). The annealing kinetics of the EPR detected radicals has been studied from 4.2 K to ambient temperature and also for calcined titania particles from 523 to 1273 K.  相似文献   

10.
Developing visible light responsive (VLR) TiO2 photocatalysts is essential and attractive for the consideration of solar energy utilization. A large amount of work have shown TiO2 modified with several nonmetal elements having VLR performance, although according to DFT calculation, Asahi denied the VLR properties of fluorine, carbon, etc. in doping TiO2. Therefore, the origins of VLR activity desire further delicate discussion. In this mini-review, several strategies for VLR TiO2 modification have been introduced, including N doping or B/N codoping, surface modification with sensitizing matter such as carbonaceous or other organic substances, surface alkoxyls modification via a ligand-to-metal charge transfer (LMCT) process, and enhanced dye sensitization by fluorine modification. Besides doping, there are much more approaches to fabricate VLR TiO2 modified with nonmetal elements. However, it is still in demand to explore new methods to obtain more stable and efficient VLR TiO2 for practical application.  相似文献   

11.
Electron injection and back electron transfer (BET) dynamics have been carried out for dibromo fluorescein (DBF) sensitized TiO2 nanoparticles capped (modified) with sodium dodecyl benzene sulfonate using transient absorption techniques in picosecond and microsecond time domain. BET dynamics have been compared with bare (unmodified) nanoparticles for the same DBF/TiO2 system. It has been observed that BET reaction is slow on the modified surface compared to a bare surface in earlier time domain (picosecond). This observation has been explained by the fact that on surface modification the energy levels of the semiconductor nanoparticles are pushed up in energy. As a result, the free energy of reaction (-deltaG zero) for BET reaction of a dye/SM-TiO2 system increases as compared to the dye/bare TiO2 system. High exoergic BET reaction in dye-sensitized TiO2 nanoparticles surfaces fall in the Marcus inverted regime, so with increasing free energy of reaction, BET rate decreases on the modified surface. However, a reversible trend in BET dynamics has been observed for the above systems in the longer time domain (microsecond). In microsecond time domain BET reaction is faster on the modified surface as compared to on the bare surface. Modification of this surface reduces the density of deep trap states. Recombination dynamics between deep-trapped electron and parent cation is slow due to low coupling strength of BET reaction. As the density of deep-trapped electrons is high in bare particles, BET reaction is slow in longer time domain.  相似文献   

12.
Highly crystalline, near monodisperse TiO2 nanoparticles, nanorods and their metal-ion-doped (Sn4+, Fe3+, Co2+, and Ni2+, etc.) derivatives have been prepared by well-controlled solvothermal reactions. Through adjusting the reaction parameters, such as reaction temperature, duration, and concentration of the reactants, the size, shape, and dispersibility of the products can be controlled. A possible reaction mechanism can be proposed based on experimental evidence.  相似文献   

13.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

14.
15.
The hydrogen adsorption energies for nitrogen-containing carbon nanotubes (N-CNTs) and for bare carbon nanotubes were calculated using the density functional theory methods at the B3LYP/6–31-G(d) level, including dispersion force corrections. The N-CNTs were finite saturated and non-saturated single-walled carbon nanotubes that contained one or more pyrimidine units, the relative positions of which defined the different configurations of the nanotube. The chemisorption of atomic hydrogen to a full exocyclic monolayer of zigzag, armchair, and chiral N-CNTs was studied as a function of the structural parameters. Zigzag N-CNTs of any configuration, with a larger number of nitrogen atoms, a small diameter and a small length, are more reactive compared to chiral and armchair N-CNTs. The presence of nitrogen in the carbon nanotubes enhances their reactivity to chemisorb atomic hydrogen, showing exothermic energy values. In contrast, the physisorption of molecular hydrogen was endothermic for most of the studied saturated N-CNTs, even when including corrections for van der Waals interactions. The endothermicity was greatest for zigzag nanotubes, then decreased for chiral nanotubes and decreased again for armchair nanotubes. In general, the endothermicity decreased for longer nanotubes, which have larger diameters, and a small number of nitrogen atoms. The results of this study suggest that, with saturated bare carbon nanotubes, saturated, and unsaturated N-CNTs could potentially have a higher capacity as hydrogen-storage media than the corresponding unsaturated carbon nanotubes.  相似文献   

16.
Using first-principles computations, we studied NH3 adsorption on a series of zigzag (n,0) single-walled BN nanotubes (BNNTs) and the effect of gas coverage. Tube diameter and NH3 coverage play important roles on the tube-NH3 interaction. Chemisorption of a single NH3 molecule on top of B site is energetically preferable for all the tubes studied, but the adsorption energy decreases sharply with increasing tube diameter, and then gradually approaches the value for NH3 physisorption on BN graphene layer. On the sidewall of (10,0) BNNT, NH3 molecules prefer to pair arrangement on top of B and N atoms opposite in the same hexagon. At low coverages, NH3 molecules are partly chemically bound to BNNTs. With the increase of NH3 coverage, hydrogen bonds form between the adsorbed NH3 molecules or between the NH3 molecules and N atoms in BNNTs. When the coverage reaches 25%, the chemisorption of NH3 transforms to physisorption completely. NH3 adsorption does not modify the overall band structures of BNNTs, irrespective of NH3 coverage, but the band gap is narrowed due to the NH3-tube coupling and tube deformation.  相似文献   

17.
We apply herein the reactive layer-by-layer (LBL) spray deposition of a polycation (polyethyleneimine, PEI) and a water soluble initiator of titanium dioxide [Ti(IV) bis(ammoniumlactato)dihydroxide, TiBisLac] to produce thin hybrid films containing PEI and nearly monodisperse TiO(2) anatase nanoparticles. The thickness of these coatings can be finely adjusted by either changing the number of deposition steps or the TiBisLac concentration. These films display intense absorption in the UV range and nearly full transparency above 365 nm and they also display photoinduced superhydrophilicity. These coatings can be produced either by reactive LBL spray deposition or reactive LBL dipping and may offer a wide range of applications from biology, as antibacterial coatings, to photoactive materials.  相似文献   

18.
The advent of nano-biotechnology has inspired the interface interaction study between engineered nanoparticles (NPs) and biomolecules. The interaction between Fe content titanium dioxide (TiO2) NPs and adenosine triphosphate (ATP) biomolecules has been envisioned. The effect of Fe content in TiO2 matrix was studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The increase in Fe content caused a decrease in particle size with change in morphology from spherical to one-dimensional rod structure. The Fe incorporation in the TiO2 matrix reduced the transition temperature from anatase to rutile (A-R) phase along with formation of haematite phase of iron oxide at 400°C. The interaction of Fe content TiO2 NPs with ATP molecule has been studied using spectroscopic method of Raman scattering and infrared vibration spectrum along with TEM. Fe content in TiO2 has enhanced the interaction efficiency of the NPs with ATP biomolecules. Raman spectroscopy confirms that the NPs interact strongly with nitrogen (N7) site in the adenine ring of ATP biomolecule. Engineering of Fe content TiO2 NP could successfully tune the coordination between metal oxide NPs with biomolecules, which could help in designing devices for biomedical applications.  相似文献   

19.
In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modification schemes on nanoparticle nonspecific binding, the interaction between functionalized silica nanoparticles and a DNA chip was also studied using confocal imaging/fluorescence microscopy. Dye-doped silica nanoparticles functionalized with octadecyl and carboxylate groups showed minimal nonspecific binding. Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.  相似文献   

20.
采用十六胺作为表面修饰剂,通过一种简单易行的方法成功制备了纳米TiO_2微球.分别利用傅立叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征手段对纳米TiO_2微球进行了结构和形貌表征.将制备的纳米TiO_2微球添加到水性聚氨酯基体(WPU)中,测试了其性能.结果表明,纳米TiO_2微球的添加显著提高了WPU的抗紫外线性能、耐水性和热稳定性等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号