首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.  相似文献   

2.
In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. We show that sufficient second order optimality conditions for regularized problems with small regularization parameter can be obtained from a second order sufficient condition assumed for the unregularized problem. Moreover, error estimates with respect to the regularization parameter are derived.  相似文献   

3.
We Gonsider a class of nonlinear cone constrained optimization problems depending on a parameter. Under the assumption of a constraint qualification, a second order sufficient optimality condition and a stability condition for the Lagrange multipliers it is shown, that for sufficiently smooth perturbations of the constraints and the objective function the optimal solutions obey a type of Lipschitz condition.  相似文献   

4.
This paper is concerned with approximations to infinite optimization problems in Banach spaces. Under the assumption of a first order necessary and a second order sufficient optimality condition we derive convergence results for the optimal solutions and the optimal values of the approximating problems. An application to finite difference approximations of nonlinear optimal control problems with state constraints is given.  相似文献   

5.
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derived under the Mangasarian-Fromovitz condition and under the assumption that the state and control constraint functions are smooth. In this paper we derive necessary optimality conditions for problems with nonsmooth mixed state and control constraints under constraint qualifications based on pseudo-Lipschitz continuity and calmness of certain set-valued maps. The necessary conditions are stratified, in the sense that they are asserted on precisely the domain upon which the hypotheses (and the optimality) are assumed to hold. Moreover necessary optimality conditions with an Euler inclusion taking an explicit multiplier form are derived for certain cases.  相似文献   

6.
In this paper we investigate Lipschitz continuity of optimal solutions for the Bolza optimal control problem under Tonelli’s type growth condition. Such regularity being a consequence of normal necessary conditions for optimality, we propose new sufficient conditions for normality of state-constrained nonsmooth maximum principles for absolutely continuous optimal trajectories. Furthermore we show that for unconstrained problems any minimizing sequence of controls can be slightly modified to get a new minimizing sequence with nice boundedness properties. Finally, we provide a sufficient condition for Lipschitzianity of optimal trajectories for Bolza optimal control problems with end point constraints and extend a result from (J. Math. Anal. Appl. 143, 301–316, 1989) on Lipschitzianity of minimizers for a classical problem of the calculus of variations with discontinuous Lagrangian to the nonautonomous case.  相似文献   

7.
In this paper, an optimal control problem for the stationary Navier-Stokes equations in the presence of state constraints is investigated. Existence of optimal solutions is proved and first order necessary conditions are derived. The regularity of the adjoint state and the state constraint multiplier is also studied. Lipschitz stability of the optimal control, state and adjoint variables with respect to perturbations is proved and a second order sufficient optimality condition for the case of pointwise state constraints is stated.  相似文献   

8.
《Optimization》2012,61(2):227-240
In this article, the idea of a dual dynamic programming is applied to the optimal control problems with multiple integrals governed by a semi-linear elliptic PDE and mixed state-control constraints. The main result called a verification theorem provides the new sufficient conditions for optimality in terms of a solution to the dual equation of a multidimensional dynamic programming. The optimality conditions are also obtained by using the concept of an optimal dual feedback control. Besides seeking the exact minimizers of problems considered some kind of an approximation is given and the sufficient conditions for an approximated optimal pair are derived.  相似文献   

9.
In this paper, we obtain necessary and sufficient second order optimality conditions for multiobjective problems using second order directional derivatives. We propose the notion of second order KT-pseudoinvex problems and we prove that this class of problems has the following property: a problem is second order KT-pseudoinvex if and only if all its points that satisfy the second order necessary optimality condition are weakly efficient. Also we obtain second order sufficient conditions for efficiency.  相似文献   

10.
A complete set of necessary and sufficient conditions for selecting optimal endpoints for extremals obtained from the variational Bolza problem in control notation has been developed. The method used to obtain these conditions is based on a seldom used concept of performing a dichotomy on the general optimization problem. With this concept, the problem of Bolza is decomposed into two problems, the first of which involves the selection of optimal paths with the endpoints considered fixed. The second problem involves the selection of optimal endpoints with the paths between the endpoints taken to be stationary curves. The convenience of the dichotomy in deriving the necessary and sufficient conditions for endpoints lies in its simplicity and elementary character; well-known necessary and sufficient conditions from the theory of ordinary maxima and minima are used.An endpoint necessary condition is first obtained which is simply the well-known transversality condition. An additional condition is then developed which, together with the transversality condition, leads to a set of necessary and sufficient conditions for a given extremal to be locally optimal with respect to endpoint variations. While the second condition presented is akin to the classical focal-point condition, the result is new in form and is directly applicable to the optimal control problem. In addition, it is relatively simple to apply and is easy to implement numerically when an analytical solution is not possible. It should be useful in situations where the transversality conditions yield more than one choice for an optimal endpoint.An analytic solution for a simple geodetics problem is presented to illustrate the theory. A discussion of numerical implementation of the sufficiency conditions and its application to an orbit transfer example is also included.This work was supported in part by the National Aeronautics and Space Administration, Grant No. NGR-03-002-001.  相似文献   

11.
In this paper optimal control problems for the stationary Burgers equation are analyzed. To solve the optimal control problems the augmented Lagrangian-SQP method is applied. This algorithm has second-order convergence rate depending upon a second-order sufficient optimality condition. Using piecewise linear finite elements it is proved that the discretized augmented Lagrangian-SQP method is well-defined and has second-order rate of convergence. This result is based on the proof of a uniform discrete Babuka-Brezzi condition and a uniform second-order sufficient optimality condition.  相似文献   

12.
Various type of optimal solutions of multiobjective optimization problems can be characterized by means of different cones. Provided the partial objectives are convex, we derive necessary and sufficient geometrical optimality conditions for strongly efficient and lexicographically optimal solutions by using the contingent, feasible and normal cones. Combining new results with previously known ones, we derive two general schemes reflecting the structural properties and the interconnections of five optimality principles: weak and proper Pareto optimality, efficiency and strong efficiency as well as lexicographic optimality.  相似文献   

13.
We present necessary conditions of optimality for an infinitehorizon optimal control problem. The transversality condition is derived with the help of stability theory and is formulated in terms of the Lyapunov exponents of solutions to the adjoint equation. A problem without an exponential factor in the integral functional is considered. Necessary and sufficient conditions of optimality are proved for linear quadratic problems with conelike control constraints.  相似文献   

14.
《Optimization》2012,61(3):347-363
In the article, minimax optimal control problems governed by parabolic equations are considered. We apply a new dual dynamic programming approach to derive sufficient optimality conditions for such problems. The idea is to move all the notions from a state space to a dual space and to obtain a new verification theorem providing the conditions, which should be satisfied by a solution of the dual partial differential equation of dynamic programming. We also give sufficient optimality conditions for the existence of an optimal dual feedback control and some approximation of the problem considered, which seems to be very useful from a practical point of view.  相似文献   

15.
This paper considers a class of nonlinear differentiable optimization problems depending on a parameter. We show that, if constraint regularity, a second-order sufficient optimality condition, and a stability condition for the Lagrange multipliers hold, then for sufficiently smooth perturbations of the constraints and the objective function the optimal solutions locally obey a type of Lipschitz condition. The results are applied to finite-dimensional problems, equality constrained problems, and optimal control problems.  相似文献   

16.
The aim of various technical applications (for example fusion research) is to control a plasma by magnetic fields in a desired fashion. In our model the plasma is described by the Vlasov–Poisson system that is equipped with an external magnetic field. We will prove that this model satisfies some basic properties that are necessary for calculus of variations. After that, we will analyze an optimal control problem with a tracking type cost functional with respect to the following topics: necessary conditions of first order for local optimality, derivation of an optimality system, sufficient conditions of second order for local optimality, uniqueness of the optimal control under certain conditions.  相似文献   

17.
Various first-order and second-order sufficient conditions of optimality for nonlinear optimal control problems with delayed argument are formulated. The functions involved are not required to be convex. Second-order sufficient conditions are shown to be related to the existence of solutions of a Riccati-type matrix differential inequality. Their relation with the second variation is discussed.The authors are indebted to an anonymous referee for valuable suggestions that lead to various improvements in the paper.  相似文献   

18.
《Optimization》2012,61(5):687-698
In the paper necessary and sufficient second order optimality conditions for optimal control problems governed by weakly singular non linear Hammerstein integral equations are derived. They are applied to a semilinear parabolic boundary control problem for the one dimensional heat equation.  相似文献   

19.
We consider a class of optimization problems with switch-off/switch-on constraints, which is a relatively new problem model. The specificity of this model is that it contains constraints that are being imposed (switched on) at some points of the feasible region, while being disregarded (switched off) at other points. This seems to be a potentially useful modeling paradigm, that has been shown to be helpful, for example, in optimal topology design. The fact that some constraints “vanish” from the problem at certain points, gave rise to the name of mathematical programs with vanishing constraints (MPVC). It turns out that such problems are usually degenerate at a solution, but are structurally different from the related class of mathematical programs with complementarity constraints (MPCC). In this paper, we first discuss some known first- and second-order necessary optimality conditions for MPVC, giving new very short and direct justifications. We then derive some new special second-order sufficient optimality conditions for these problems and show that, quite remarkably, these conditions are actually equivalent to the classical/standard second-order sufficient conditions in optimization. We also provide a sensitivity analysis for MPVC. Finally, a relaxation method is proposed. For this method, we analyze constraints regularity and boundedness of the Lagrange multipliers in the relaxed subproblems, derive a sufficient condition for local uniqueness of solutions of subproblems, and give convergence estimates. Research of the first author was supported by the Russian Foundation for Basic Research Grants 07-01-00270, 07-01-00416 and 07-01-90102-Mong, and by RF President’s Grant NS-9344.2006.1 for the support of leading scientific schools. The second author was supported in part by CNPq Grants 301508/2005-4, 490200/2005-2 and 550317/2005-8, by PRONEX-Optimization, and by FAPERJ.  相似文献   

20.
In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号