首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Zinc oxide (ZnO) thin films on Si (1 1 1) substrates were deposited by pulsed laser ablation of ZnO target at different oxygen pressures. A pulsed Nd:YAG laser with wavelength of 1064 nm was used as laser source. The deposited thin films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), and Raman spectroscopy. XRD measurements indicate that the ZnO thin films deposited at the oxygen pressure of 1.3 Pa have the best crystalline quality. AFM results show that the surface roughness of ZnO film increases with the increase of oxygen pressure. The Raman results indicate that oxygen ambient plays an important role in removing defects due to excess zinc.  相似文献   

2.
The contribution deals with ZnO thin layers doped by nitrogen which were prepared by pulsed laser deposition in N2O ambient atmosphere. Our approach is based on ablation of undoped ZnO target in active atmosphere containing N2O gas without any supporting excitation equipment in parallel. Ablation of ZnO target was performed at different pressures (1–32 Pa) of N2O ambient atmosphere by pulsed Nd:YAG laser (at 355 nm). Layers of ZnO were grown on different substrates (Si, sapphire, fused silica) and their properties were investigated by various analytical methods: scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), and optical transmission spectroscopy. The results confirmed incorporation of nitrogen into ZnO layers and its concentration was pressure dependent. According to SIMS analysis, there is a certain pressure level (above 10 Pa) when the presence of N becomes negligible. Transmittance spectra showed increasing of the optical band gap (E g) according to the pressure of N2O.  相似文献   

3.
利用飞秒脉冲激光沉积法在n-Si(100)单晶衬底上制备了ZnO薄膜, 分析了衬底温度、激光能量、氧压及退火处理对薄膜结构和光学性能的影响. X射线衍射结果表明, 当激光能量为15?mJ、氧压为10?mPa时, 80?℃生长的薄膜取向性最好. 场扫描电子显微镜结果显示薄膜的晶粒尺寸随激光能量的增加而减小、随衬底温度的升高而增大且退火后明显变大. 紫外-可见透射光谱显示薄膜具有90%以上的可见光透过率.光致发光谱表明当氧压为10 mPa时,除了ZnO的紫外本征峰外, 还有一波长为410 nm的强紫光峰, 当氧压增至20 mPa以上, 所有缺陷峰均消失, 只有376 nm处的紫外本征峰. 与纳秒激光法所制备的薄膜特性进行了比较, 结果表明, 虽然纳秒激光沉积所制备的薄膜具有更高的c轴取向度, 但飞秒激光沉积制备的薄膜具有更好的发光性能. 关键词: 氧化锌 飞秒脉冲激光沉积 透过率 光致发光  相似文献   

4.
One of the most important and promising materials from metal oxides is ZnO with specific properties for near UV emission and absorption optical devices. The properties of ZnO thin films strongly depend on the deposition method. Among them, pulsed laser deposition (PLD) plays an important role for preparing various kinds of ZnO films, e.g. doped, undoped, monocrystalline, and polycrystalline. Different approaches — ablation of sintered ZnO pellets or pure metallic Zn as target material are described. This contribution is comparing properties of ZnO thin films deposited from pure Zn target in oxygen atmosphere and those deposited from sintered ZnO target. There is a close connection between final thin film properties and PLD conditions. The surface properties of differently grown ZnO thin films are measured by secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, different approaches — ablation of sintered ZnO pellet or pure metallic Zn as target materials are described. The main results characterize typical properties of ZnO films versus technological parameters are presented. Presented at 5-th International Conference Solid State Surfaces and Interfaces, November 19–24, 2006, Smolenice Castle, Slovakia  相似文献   

5.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

6.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

7.
《Current Applied Physics》2010,10(2):693-697
ZnO thin films were deposited at room temperature by pulsed laser deposition (PLD) varying the oxygen pressure. Morphological analysis using scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated the formation of ZnO nanorods at a particular oxygen pressure. Room temperature violet luminescence was observed from these ZnO nanorods and temperature dependence of luminescence was studied. Influence of oxygen pressure on the growth of ZnO thin films by PLD was studied using the X-ray photoelectron spectroscopy of both post ablated targets and deposited films. The ZnO films were crystalline and the formation of crystalline phase is found to follow a pressure–temperature (PT) scaling with increase of temperature.  相似文献   

8.
采用脉冲激光沉积(PLD)技术,在Si(100)衬底上制备出高度c轴取向的ZnO薄膜。通过X射线衍射(XRD)谱,扫描电镜(SEM)和室温光致发光(PL)光谱的测量,研究了生长气氛压强的改变对薄膜结构和光致发光的影响。实验结果表明,当氧压从10Pa升高到100Pa时ZnO(002)衍射峰的半峰全宽(FWHM)增大。可以认为这是由于较高的氧压下,到达衬底表面的离子动能减小。这样部分离子没有足够的能量迁移到生长较快的(002)面,c轴取向变差,导致(002)衍射峰的强度降低,半峰全宽增大。随着氧压增大,紫外发光强度增强。这可能是氧压变大,薄膜的化学配比升高,说明化学配比对UV发光的影响要大于薄膜微结构的影响。改变氧气压强对薄膜的表面形貌也有较大的影响。  相似文献   

9.
The pulsed laser deposition (PLD) technique is used to deposit undoped ZnO thin films on glass substrates at 150 °C with different oxygen pressures of 40, 80, 100 and 150 mTorr. X-ray diffraction (XRD) and atomic force microscopy (AFM) studies indicated that the obtained ZnO thin films were hexagonal wurtzite-type structures with strong (0 0 2) c-axis orientation. The relationship between photoluminescence and the conductivity of the ZnO thin films grown by pulsed laser deposition at various oxygen pressures was also discussed. The intensity of the deep-level-emission (DLE) and conductivity generally increased as the oxygen pressure decreased. The intensity of DLE peak was generally proportional to the conductivity. The band gap energy values, determined from transmittance spectra, were around 3.30-3.34 eV, and decreased when the oxygen pressure increased.  相似文献   

10.
脉冲激光沉积方法制备ZnO薄膜生长参量对发光特性的影响   总被引:4,自引:3,他引:1  
王兆阳  胡礼中  赵杰  孙捷  王志俊 《光学学报》2005,25(10):371-1374
用脉冲激光沉积(PLD)方法在Si(111)衬底上制备了ZnO薄膜。以325nmHe-Cd激光器为光源对薄膜进行了荧光光谱分析,用X射线衍射仪(XRD)和原子力显微镜(AFM)分别对薄膜的结构和形貌进行了分析。脉冲激光沉积方法的主要生长参量为氧压、激光重复频率、生长温度和激光能量。通过控制这些参量变量,研究了这些参量对ZnO薄膜发光特性的影响,得到了用于紫外发光的ZnO薄膜生长的优化条件:发现在温度为650℃左右、氧压50Pa左右、频率5Hz左右的范围内能得到半峰全宽较窄,强度较大的紫外发光峰。分析认为紫外峰主要是由激子辐射复合发光形成的,绿光带主要和Ozn的存在密切相关,氧空位是蓝光发射的重要原因。  相似文献   

11.
采用脉冲激光沉积(PLD)法在单晶Si(100)衬底上生长ZnO薄膜,以X射线衍射(XRD)、原子力显微镜(AFM)和透射电镜(TEM)等手段分析了所得ZnO薄膜的晶体结构和微观形貌。优化工艺(700℃,20Pa)下生长的ZnO薄膜呈c轴高度择优取向,柱状晶垂直衬底表面生长,结构致密均匀。室温光致发光(PL)谱分析结果表明,随着薄膜生长时O2分压的增大,近带边紫外发光峰与深能级发光峰之比显著增强,表明薄膜的结晶性能和化学计量比都有了很大的改善。O2分压为20Pa时所生长的ZnO薄膜具有较理想的化学计量比和较高的光学质量。  相似文献   

12.
Transparent aluminum-doped zinc oxide (AZO) thin films were deposited on quartz glass substrates by pulsed laser deposition (PLD) from ablating Zn-Al metallic targets. The structural, electrical and optical properties of these films were characterized as a function of Al concentration (0-8 wt.%) in the target. Films were deposited at a low substrate temperature of 150 °C under 11 Pa of oxygen pressure. It was observed that 2 wt.% of Al in the target (or 1.37 wt.% of Al doped in the AZO film) is the optimum concentration to achieve the minimum film resistivity and strong ultraviolet emission. The presence of Al in the ZnO film changes the carrier concentration and the intrinsic defects.  相似文献   

13.
The effect of pulsed laser treatment of metal, and metal blacks, was studied. Gold and black gold thin films were fabricated by thermal evaporation of gold in a vacuum and nitrogen atmosphere respectively. Black gold films were grown in a nitrogen atmosphere at pressures of 200 Pa and 300 Pa. UV pulsed laser radiation (λ = 266 nm, τ = 4 ns), with fluence ranging from 1 mJ·cm−2 to 250 mJ·cm−2 was used for the film treatment in a vacuum and nitrogen atmosphere. The nitrogen pressure was varied up to 100 kPa. Surface structure modifications were analyzed by optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDX) was used for chemical characterization of the samples. A significant dependence of the film optical and structural properties on laser treatment conditions (laser fluence, ambient pressure and number of applied pulses) was found. The threshold for observable damage and initiation of changes of morphology for gold and black gold surfaces was determined. Distinct modifications were observed for fluences greater than 106 mJ·cm−2 and 3.5 mJ·cm−2 for the gold and black gold films respectively. Absorbtivity of the black gold film is found to decrease with an increase in the number of laser pulses. Microstructural and nanostructural modifications after laser treatment of the black gold film were observed. EDX analysis revealed that no impurities were introduced into the samples during both the deposition and laser treatment.   相似文献   

14.
Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.  相似文献   

15.
Zinc nitride (Zn3N2) thin films are prepared using pulsed laser deposition (PLD) from zinc selenide (ZnSe) target at different nitrogen ambient pressures viz. 1, 3, 5, 7 and 10 Pa. The films prepared with nitrogen pressures 1 and 3 Pa are amorphous in nature, whereas the films prepared at 5, 7 and 10 Pa exhibit the presence of cubic bixbyite Zn3N2 structure with lattice parameter very close to bulk of Zn3N2. The particle size calculated by Debye Scherrer's formula is in the nano regime. Surface morphology of the films is studied by SEM and AFM analysis. Optical parameters such as band gap, refractive index and porosity of the films are calculated. Moreover, the present study confers an outlook about how do various factors such as substrate temperature, reactive supplementing gas and laser-target interaction influence the film developing process during pulsed lased deposition.  相似文献   

16.
In the present work we have studied the properties of zinc oxide (ZnO) thin films grown by laser ablation of ZnO targets under different substrate temperature and background oxygen conditions. The ZnO layers were deposited with a Pulsed Laser Deposition (PLD) system on pre-nitrided (0001) sapphire (Al2O3), using the base line of a Nd:YAG laser at 1064 nm. The films were characterized by different structural and optical methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmission spectroscopy, and steady-state photoluminescence (PL). XRD analysis with rocking curves and θ–2θ scans indicates preferential growth along the c-axis direction with a full width at half maximum (FWHM) smaller than 1.5. Low-temperature photoluminescence (PL) showed strong excitonic emission near 3.36 eV between 9 and 65 K.  相似文献   

17.
韩军  张鹏  巩海波  杨晓朋  邱智文  自敏  曹丙强 《物理学报》2013,62(21):216102-216102
本文研究了脉冲激光沉积(PLD)生长过程中, 铝掺量、氧压及衬底温度等实验参数对ZnO:Al(AZO)薄膜生长的影响, 并利用扫描电子显微镜、原子力显微镜、X射线衍射、霍尔效应、光透射光谱等实验手段对其透明导电性能进行了探讨. 变温霍尔效应和光透射测量表明, 当靶材中铝掺量大于0.5 wt%时, 所制备AZO薄膜中铝施主在80 K时已完全电离, 因Bernstein-Moss (BM) 效应其带隙变大, 均为重掺杂简并半导体. 进一步系统研究了氧压和衬底温度对AZO薄膜透明导电性能的影响, 实验发现当氧压为1 Pa, 衬底温度为200 ℃时, AZO 导电性能最好, 其霍尔迁移率为28.8 cm2/V·s, 薄膜电阻率最小可达2.7×10-4 Ω·cm, 且在可见光范围内光透过率超过了85%. 氧压和温度的增加, 都会导致薄膜电阻率变大. 关键词: 脉冲激光沉积法 ZnO:Al薄膜 透光性 导电性  相似文献   

18.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

19.
Thin films of zinc oxide have been deposited by reactive pulsed laser ablation of Zn and ZnO targets in presence of a radio frequency (RF) generated oxygen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration, on Si (1 0 0). Thin films have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectroscopy. A comparison among conventional PLD and reactive RF plasma-assisted PLD has been performed.  相似文献   

20.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号